Objective Evaluation of the Discriminant Power of Features in an HMM-based Word Recognition System

This paper describes an elegant method for evaluating the discriminant power of features in the framework of an HMM-based word recognition system. This method employs statistical indicators, entropy and perplexity, to quantify the capability of each feature to discriminate between classes without resorting to the result of the recognition phase. The HMMs and the Viterbi algorithm are used as powerful tools to automatically deduce the probabilities required to compute the above mentioned quantities.

[1]  Mei-Yuh Hwang,et al.  Speech recognition using hidden Markov models: A CMU perspective , 1990, Speech Commun..

[2]  N. D. Gorsky,et al.  Experiments with handwriting recognition using holographic representation of line images , 1994, Pattern Recognit. Lett..

[3]  A. Yacoubi,et al.  Modelisation markovienne de l'ecriture manuscrite application a la reconnaissance des adresses postales , 1996 .

[4]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[5]  A. Poritz,et al.  Hidden Markov models: a guided tour , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[6]  Eberhard Mandler,et al.  Handwritten word recognition using statistics , 1994 .

[7]  Jian Zhou,et al.  Off-Line Handwritten Word Recognition Using a Hidden Markov Model Type Stochastic Network , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Lalit R. Bahl,et al.  A Maximum Likelihood Approach to Continuous Speech Recognition , 1983, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  J. Simon,et al.  From Pixels to Features III: Frontiers in Handwriting Recognition , 1992 .

[10]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[11]  Sargur N. Srihari,et al.  Control Structure for Interpreting Handwritten Addresses , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  KimGyeonghwan,et al.  A Lexicon Driven Approach to Handwritten Word Recognition for Real-Time Applications , 1997 .

[13]  Gyeonghwan Kim,et al.  A Lexicon Driven Approach to Handwritten Word Recognition for Real-Time Applications , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Gyeonghwan Kim,et al.  Handwritten word recognition for real-time applications , 1995, Proceedings of 3rd International Conference on Document Analysis and Recognition.

[15]  Sebastiano Impedovo,et al.  Frontiers in Handwriting Recognition , 1994 .

[16]  Manuel Leroux Reconnaissance de textes manuscrits à vocabulaire limité avec application à la lecture automatique des chèques , 1991 .

[17]  Ching Y. Suen,et al.  Bank check processing system , 1996, Int. J. Imaging Syst. Technol..

[18]  Mounim A. El-Yacoubi,et al.  Conjoined location and recognition of street names within a postal address delivery line , 1995, Proceedings of 3rd International Conference on Document Analysis and Recognition.

[19]  Sargur N. Srihari,et al.  Name and Address Block Reader system for tax form processing , 1995, Proceedings of 3rd International Conference on Document Analysis and Recognition.

[20]  Yves Lecourtier,et al.  Recognition of handwritten sentences using a restricted lexicon , 1993, Pattern Recognit..