복수 샘플링과 트리밍을 통한 고품질 연관규칙 추출법
暂无分享,去创建一个
본 논문은 전체 데이터베이스에서 일부 추출된 샘플 데이터에서 빈발항목 집합을 찾는 연관규칙 마이닝 알고리즘을 기술한다. 샘플링기술을 이용하면 마이닝과정에서 필요한 데이터베이스의 접근 양을 줄이므로써 실행시간을 단축시킬 수 있다는 장점이 있지만, 전체데이터베이스를 이용한 마이닝보다 정확도가 떨어진다는 단점이 함께 존재한다. 이전의 Chen의 FAST알고리즘은 샘플링을 이용한 마이닝과정에서 거리오차함수를 이용한 트리밍과정을 통해 빈발 1항목집합에 대한 정확도를 개선시켰다. 이후 IFAST 알고리즘은 트리밍과정에서 빈발2-항목집합까지 고려하여 빈발2-항목집합 이상의 빈발항목집합에서도 정확도를 개선시켰다. 본 논문에서는 트리밍과정에서 사용될 추정데이터를 여러 개의 샘플데이터를 이용하여 얻으므로써 오류항목집합(false itemset)의 수를 줄이고 전체적인 정확도를 향상시키는 새로운 알고리즘을 소개한다.