Dynamic doping and Cottrell atmosphere optimize the thermoelectric performance of n-type PbTe over a broad temperature interval

[1]  Zihang Liu,et al.  Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling , 2022, Nature communications.

[2]  C. Uher,et al.  A comprehensive review on Bi2Te3‐based thin films: Thermoelectrics and beyond , 2022, Interdisciplinary Materials.

[3]  R. Ang,et al.  High-performance in n-type PbTe-based Thermoelectric Materials Achieved by Synergistically Dynamic Doping and Energy Filtering , 2021, Nano Energy.

[4]  M. Wuttig,et al.  Boron-Mediated Grain Boundary Engineering Enables Simultaneous Improvement of Thermoelectric and Mechanical Properties in N-Type Bi2 Te3. , 2021, Small.

[5]  M. Kanatzidis,et al.  Polycrystalline SnSe with a thermoelectric figure of merit greater than the single crystal , 2021, Nature Materials.

[6]  Yongxin Qin,et al.  Contrasting Cu Roles Lead to High Ranged Thermoelectric Performance of PbS , 2021, Advanced Functional Materials.

[7]  W. Shin,et al.  Cumulative Defect Structures for Experimentally-Attainable Low Thermal Conductivity in Thermoelectric (Bi,Sb)2Te3 Alloys , 2021 .

[8]  G. J. Snyder,et al.  Nb‐Mediated Grain Growth and Grain‐Boundary Engineering in Mg3Sb2‐Based Thermoelectric Materials , 2021, Advanced Functional Materials.

[9]  K. Tsuchiya,et al.  Demonstration of ultrahigh thermoelectric efficiency of ∼7.3% in Mg3Sb2/MgAgSb module for low-temperature energy harvesting , 2021 .

[10]  G. J. Snyder,et al.  Parallel Dislocation Networks and Cottrell Atmospheres Reduce Thermal Conductivity of PbTe Thermoelectrics , 2021, Advanced Functional Materials.

[11]  P. Sun,et al.  Generic Seebeck effect from spin entropy , 2020, Innovation.

[12]  C. Stampfer,et al.  Metavalent Bonding in Crystalline Solids: How Does It Collapse? , 2020, Advanced materials.

[13]  G. J. Snyder,et al.  Retarding Ostwald ripening through Gibbs adsorption and interfacial complexions leads to high-performance SnTe thermoelectrics , 2021, Energy & Environmental Science.

[14]  Chongjian Zhou,et al.  Nanoscale defect structures advancing high performance n-type PbSe thermoelectrics , 2020 .

[15]  M. Wuttig,et al.  Discovering Electron‐Transfer‐Driven Changes in Chemical Bonding in Lead Chalcogenides (PbX, where X = Te, Se, S, O) , 2020, Advanced materials.

[16]  M. Wuttig,et al.  Exceptionally High Average Power Factor and Thermoelectric Figure of Merit in n-type PbSe by the Dual Incorporation of Cu and Te. , 2020, Journal of the American Chemical Society.

[17]  M. Wuttig,et al.  Chalcogenides by Design: Functionality through Metavalent Bonding and Confinement , 2020, Advanced materials.

[18]  M. Wuttig,et al.  Employing Interfaces with Metavalently Bonded Materials for Phonon Scattering and Control of the Thermal Conductivity in TAGS‐x Thermoelectric Materials , 2020, Advanced Functional Materials.

[19]  B. Ge,et al.  Cu Interstitials Enable Carriers and Dislocations for Thermoelectric Enhancements in n-PbTe0.75Se0.25 , 2020, Chem.

[20]  G. J. Snyder,et al.  Revealing nano-chemistry at lattice defects in thermoelectric materials using atom probe tomography , 2020 .

[21]  G. J. Snyder,et al.  Realization of higher thermoelectric performance by dynamic doping of copper in n-type PbTe , 2019, Energy & Environmental Science.

[22]  G. J. Snyder,et al.  Density, distribution and nature of planar faults in silver antimony telluride for thermoelectric applications , 2019, Acta Materialia.

[23]  M. Wuttig,et al.  Chalcogenide Thermoelectrics Empowered by an Unconventional Bonding Mechanism , 2019, Advanced Functional Materials.

[24]  G. J. Snyder,et al.  Amphoteric Indium Enables Carrier Engineering to Enhance the Power Factor and Thermoelectric Performance in n‐Type AgnPb100InnTe100+2n (LIST) , 2019, Advanced Energy Materials.

[25]  Volker L. Deringer,et al.  A Quantum‐Mechanical Map for Bonding and Properties in Solids , 2018, Advanced materials.

[26]  M. Wuttig,et al.  Tailoring Thermoelectric Transport Properties of Ag-Alloyed PbTe: Effects of Microstructure Evolution. , 2018, ACS applied materials & interfaces.

[27]  G. J. Snyder,et al.  Boosting the thermoelectric performance of PbSe through dynamic doping and hierarchical phonon scattering , 2018 .

[28]  M. Wuttig,et al.  Thermoelectric Performance of IV–VI Compounds with Octahedral‐Like Coordination: A Chemical‐Bonding Perspective , 2018, Advanced materials.

[29]  M. Kanatzidis,et al.  Weak Electron Phonon Coupling and Deep Level Impurity for High Thermoelectric Performance Pb1−xGaxTe , 2018 .

[30]  Richard Dronskowski,et al.  Unique Bond Breaking in Crystalline Phase Change Materials and the Quest for Metavalent Bonding , 2018, Advanced materials.

[31]  Gang Chen,et al.  Deep defect level engineering: a strategy of optimizing the carrier concentration for high thermoelectric performance , 2018 .

[32]  M. Wuttig,et al.  Ag-Segregation to Dislocations in PbTe-Based Thermoelectric Materials. , 2018, ACS applied materials & interfaces.

[33]  Matthias Wuttig,et al.  Incipient Metals: Functional Materials with a Unique Bonding Mechanism , 2017, Advanced materials.

[34]  C. Scheu,et al.  Evaluation of EELS spectrum imaging data by spectral components and factors from multivariate analysis , 2017, Microscopy.

[35]  Terry M. Tritt,et al.  Advances in thermoelectric materials research: Looking back and moving forward , 2017, Science.

[36]  Y. Amouyal,et al.  Microstructure Evolution of Ag-Alloyed PbTe-Based Compounds and Implications for Thermoelectric Performance , 2017 .

[37]  Tiejun Zhu,et al.  Compromise and Synergy in High‐Efficiency Thermoelectric Materials , 2017, Advanced materials.

[38]  M. Wuttig,et al.  Simultaneous optimization of electrical and thermal transport properties of Bi0.5Sb1.5Te3 thermoelectric alloy by twin boundary engineering , 2017 .

[39]  G. J. Snyder,et al.  Lattice Dislocations Enhancing Thermoelectric PbTe in Addition to Band Convergence , 2017, Advanced materials.

[40]  M. Kanatzidis,et al.  Subtle Roles of Sb and S in Regulating the Thermoelectric Properties of N‐Type PbTe to High Performance , 2017 .

[41]  M. Dargusch,et al.  N-type Bi-doped PbTe nanocubes with enhanced thermoelectric performance , 2017 .

[42]  Gangjian Tan,et al.  Rationally Designing High-Performance Bulk Thermoelectric Materials. , 2016, Chemical reviews.

[43]  Michihiro Ohta,et al.  Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules , 2016 .

[44]  B. Ryu,et al.  Defects responsible for abnormal n-type conductivity in Ag-excess doped PbTe thermoelectrics , 2015, 1506.01584.

[45]  G. J. Snyder,et al.  Optimum Carrier Concentration in n‐Type PbTe Thermoelectrics , 2014 .

[46]  K. Esfarjani,et al.  Resonant bonding leads to low lattice thermal conductivity , 2014, Nature Communications.

[47]  Vinayak P. Dravid,et al.  The panoscopic approach to high performance thermoelectrics , 2014 .

[48]  M. Kanatzidis,et al.  High-performance bulk thermoelectrics with all-scale hierarchical architectures , 2012, Nature.

[49]  Heng Wang,et al.  Lead telluride alloy thermoelectrics , 2011 .

[50]  G. J. Snyder,et al.  Solubility and microstructure in the pseudo-binary PbTe–Ag2Te system , 2011 .

[51]  G. J. Snyder,et al.  Reevaluation of PbTe1−xIx as high performance n-type thermoelectric material , 2011 .

[52]  Heng Wang,et al.  Convergence of electronic bands for high performance bulk thermoelectrics , 2011, Nature.

[53]  G. J. Snyder,et al.  Self‐Tuning the Carrier Concentration of PbTe/Ag2Te Composites with Excess Ag for High Thermoelectric Performance , 2011 .

[54]  Eric S. Toberer,et al.  High Thermoelectric Performance in PbTe Due to Large Nanoscale Ag2Te Precipitates and La Doping , 2010 .

[55]  G. J. Snyder,et al.  Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States , 2008, Science.

[56]  G. J. Snyder,et al.  Complex thermoelectric materials. , 2008, Nature materials.

[57]  Jan Modersitzki,et al.  Numerical Methods for Image Registration , 2004 .

[58]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[59]  P. Klemens,et al.  Phonon Scattering by Impurity Atmospheres Surrounding Dislocations. III. Combined Mass and Distortion Scattering , 1971 .

[60]  F. Wald Constitutional investigations in the silver- lead-tellurium system. , 1967 .

[61]  P. Carruthers Scattering of Phonons by Elastic Strain Fields and the Thermal Resistance of Dislocations , 1959 .

[62]  M. A. Jaswon,et al.  Distribution of solute atoms round a slow dislocation , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.