Pneumatic conveying of ice particles through mine-shaft pipelines

A pilot-plant experimental investigation is described into the pneumatic conveying of large ice particles through long pipelines extending down deep mine shafts. Using low-pressure plastic piping with an inner diameter of 136 mm and cylindrical ice particles with initial dimensions of up to 34 mm, the main testing programme encompassed ice flow rates of up to 7.4 kg/s through a pipeline 2968 m long and extending to a depth of 1770 m below the surface. Ice was also delivered to a depth of 2407 m below the surface through a pipeline 3905 m long. Various regimes of two-phase flow were observed in the various vertical and horizontal sections of the pipeline, including dilute-phase flow and cohesive plug flow. Equations are presented for the prediction of pressure gradients along the respective sections, with empirical correlations for solids friction factors. The investigation proved the feasibility of conveying ice underground for mine-cooling purposes.

[1]  O. Molerus Prediction of pressure drop with steady state pneumatic conveying of solids in horizontal pipes , 1981 .

[2]  H. P. Simons,et al.  Flow characteristics in horizontal fluidized solids transport , 1959 .

[3]  P. Schuchart Widerstandsgesetze beim pneumatischen Transport in Rohrkrümmern , 1968 .

[4]  Robert Pfeffer,et al.  The behavior of liquid bridges between two relatively moving particles , 1987 .

[5]  George E. Klinzing Gas-Solid Transport , 1981 .

[6]  J. M. Kim,et al.  Pressure drop for cocurrent downflow of gas‐solids suspensions , 1983 .

[7]  J A Hitchcock,et al.  The pneumatic conveying of spheres through straight pipes , 1958 .

[8]  R. G. Boothroyd,et al.  Flowing gas-solids suspensions , 1971 .

[9]  A. Zaltash,et al.  Pneumatic transport — a review (generalized phase diagram approach to pneumatic transport) , 1987 .

[10]  Shigeru Matsumoto,et al.  Solid particle velocity in vertical gaseous suspension flows , 1986 .

[11]  P. C. Arnold,et al.  On improving scale-up procedures for pneumatic conveying design , 1987 .

[12]  Yoshinobu Morikawa,et al.  Pressure drops due to pipe bends in air-solids two phase flows; circular and elliptical bends , 1978 .

[13]  Edgar Muschelknautz,et al.  Vereinfachte Berechnung horizontaler pneumatischer Förderleitungen bei hoher Gutbeladung mit feinkörnigen Produkten , 1969 .

[14]  A D Roberts,et al.  Friction of rubber on ice in the presence of salt , 1983 .

[15]  Toshio Kobayashi,et al.  Friction on ice , 1988 .

[16]  Yoshinobu Morikawa,et al.  Flow pattern and pressure fluctuation in air-solid two-phase flow in a pipe at low air velocities , 1982 .

[17]  Shozaburo Saito,et al.  PNEUMATIC CONVEYING OF SOLIDS THROUGH STRAIGHT PIPES , 1969 .

[18]  O. Levenspiel,et al.  Drag coefficient and terminal velocity of spherical and nonspherical particles , 1989 .

[19]  J. D. Jong,et al.  Aerated solids flow through a vertical standpipe below a pneumatically discharged bunker , 1975 .

[20]  S. Rangachari,et al.  Theoretical and experimental investigation of fluid and particle flow in a vertical standpipe , 1984 .

[21]  Walter Barth,et al.  Strömungsvorgänge beim Transport von Festteilchen und Flüssigkeitsteilchen in Gasen. mit besonderer Berücksichtigung der Vorgänge bei pneumatischer Förderung , 1958 .

[22]  E. E. Michaelides,et al.  An evaluation of several correlations used for the prediction of pressure drop in particulate flows , 1987 .

[23]  Refrigerating 1986 ASHRAE handbook : refrigeration systems and applications , 1986 .

[24]  A. Zaltash,et al.  A simplified correlation for solids friction factor in horizontal conveying systems based on Yang's unified theory , 1989 .

[25]  G. Dixon Pneumatic conveying of solids , 1991 .

[26]  K. Konrad,et al.  Dense-phase pneumatic conveying: A review , 1986 .

[27]  H. H. G. Jellinek,et al.  Liquid-like (transition) layer on ice , 1964 .

[28]  Wen-ching Yang,et al.  Estimating the Solid Particle Velocity in Vertical Pneumatic Conveying Lines , 1973 .