Global phylogeography and ancient evolution of the widespread human gut virus crAssphage

Stan J. J. Brouns | Daniel A. Cuevas | Abigail E. Asangba | Franklin L. Nobrega | A. Kurilshikov | Jingyuan Fu | A. Zhernakova | C. Wijmenga | F. Aarestrup | M. Mirzaei | D. Mccarthy | J. Carlton | A. M. Eren | R. Edwards | C. Desnues | E. Dinsdale | B. White | S. Kelley | J. Antón | N. Dominy | Gyu-Sung Cho | H. Neve | C. Franz | E. Ghedin | C. Hill | K. Whiteson | K. Bibby | B. Dutilh | R. Raya | H. Hyöty | M. Cranfield | N. Trefault | R. Hendriksen | L. Marr | A. Whiteley | Z. Quan | Thomas Jeffries | J. Jofre | D. Lipson | K. Gulino | R. Aziz | S. Head | Angela McCann | R. Stumpf | D. Kumaresan | A. A. Vega | Holly M. Norman | M. Ohaeri | K. Levi | O. Cinek | Katelyn McNair | J. Barr | Adrián Cazares | P. A. de Jonge | Samuel L. Díaz Muñoz | P. C. Fineran | R. Lavigne | Karla Mazankova | Alejandro Reyes Muñoz | G. Tapia | A. Tyakht | P. Vinuesa | J. Wagemans | G. Ahmadov | A. Alassaf | Emma Billings | V. A. Cantu | Daniel Cazares | Tess Condeff | P. Cortés | R. De la Iglesia | P. Decewicz | Michael P. Doane | Lukasz Dziewit | Bashir Mukhtar Elwasila | C. García-Aljaro | J. M. Haggerty | E. Ilina | M. Irwin | R. Junge | Mohammadali Khan Mirzaei | M. Kowalewski | S. Leigh | Eugenia S. Lisitsyna | M. Llagostera | Julia M. Maritz | S. Molshanski-Mor | S. Monteiro | Benjamin Moreira-Grez | Megan M. Morris | L. Mugisha | M. Muniesa | Nam-phuong Nguyen | O. Nigro | A. Nilsson | Taylor O’Connell | R. Odeh | A. Oliver | M. Piuri | Aaron J. Prussin II | U. Qimron | P. Rainetova | Adán Ramírez-Rojas | K. Reasor | Gillian A O Rice | Alessandro Rossi | Ricardo Santos | J. Shimashita | E. Stachler | L. C. Stene | R. Strain | P. Torres | Alan Twaddle | MaryAnn Ugochi Ibekwe | N. Villagra | Stephen Wandro | M. Zambrano | Henrike Zschach | Juan Jofre Torroella | A. R. Ramírez Rojas | A. Whitely | Nam Nguyen | Thomas C. Jeffries | Zhexue Quan | Kyle Levi | Gillian A. O. Rice | Maria Ohaeri | P. Fineran | A. Vega | C. Hill | Abeer Alassaf | P. Rainetová

[1]  Thomas L. Madden,et al.  Database resources of the National Center for Biotechnology Information. , 2019, Nucleic acids research.

[2]  Evelien M. Adriaenssens,et al.  Analysis of Spounaviruses as a Case Study for the Overdue Reclassification of Tailed Phages , 2019, Systematic biology.

[3]  Carol L. Ecale Zhou,et al.  PHANOTATE: a novel approach to gene identification in phage genomes , 2019, Bioinform..

[4]  Vito Adrian Cantu,et al.  PRINSEQ++, a multi-threaded tool for fast and efficient quality control and preprocessing of sequencing datasets , 2019 .

[5]  C. Hill,et al.  ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis , 2018, Nature Communications.

[6]  T. Sutton,et al.  Biology and Taxonomy of crAss-like Bacteriophages, the Most Abundant Virus in the Human Gut. , 2018, Cell host & microbe.

[7]  Eroma Abeysinghe,et al.  Searching the Sequence Read Archive using Jetstream and Wrangler , 2018, PEARC.

[8]  R. P. Ross,et al.  ΦCrAss001, a member of the most abundant bacteriophage family in the human gut, infects Bacteroides , 2018, bioRxiv.

[9]  H. Hyöty,et al.  Quantitative CrAssphage real‐time PCR assay derived from data of multiple geographically distant populations , 2018, Journal of medical virology.

[10]  V. Harwood,et al.  Evaluation of the novel crAssphage marker for sewage pollution tracking in storm drain outfalls in Tampa, Florida. , 2018, Water research.

[11]  Yuying Liang,et al.  Development and application of a real‐time polymerase chain reaction assay for detection of a novel gut bacteriophage (crAssphage) , 2018, Journal of medical virology.

[12]  H. Neve,et al.  Rates of Mutation and Recombination in Siphoviridae Phage Genome Evolution over Three Decades , 2018, Molecular biology and evolution.

[13]  Evan Bolton,et al.  Database resources of the National Center for Biotechnology Information , 2017, Nucleic Acids Res..

[14]  K. Nelson,et al.  Impact of stress on the gut microbiome of free-ranging western lowland gorillas. , 2018, Microbiology.

[15]  Barbara A. Bailey,et al.  Bacteriophage Transcytosis Provides a Mechanism To Cross Epithelial Cell Layers , 2017, mBio.

[16]  R. Edwards,et al.  Genomic, proteomic, and phylogenetic analysis of spounaviruses indicates paraphyly of the order Caudovirales , 2017, bioRxiv.

[17]  Robert A Edwards,et al.  Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut , 2017, Nature Microbiology.

[18]  J. Jofre,et al.  Determination of crAssphage in water samples and applicability for tracking human faecal pollution , 2017, Microbial biotechnology.

[19]  Xiaowei Zhan,et al.  Severe Gut Microbiota Dysbiosis Is Associated With Poor Growth in Patients With Short Bowel Syndrome , 2017, JPEN. Journal of parenteral and enteral nutrition.

[20]  Orin C. Shanks,et al.  Quantitative CrAssphage PCR Assays for Human Fecal Pollution Measurement. , 2017, Environmental science & technology.

[21]  Paul J. McMurdie,et al.  Exact sequence variants should replace operational taxonomic units in marker-gene data analysis , 2017, The ISME Journal.

[22]  Travis N. Mavrich,et al.  Bacteriophage evolution differs by host, lifestyle and genome , 2017, Nature Microbiology.

[23]  Antonis Rokas,et al.  Evaluating Fast Maximum Likelihood-Based Phylogenetic Programs Using Empirical Phylogenomic Data Sets , 2017, bioRxiv.

[24]  Thomas K. F. Wong,et al.  ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates , 2017, Nature Methods.

[25]  W. Liao,et al.  Influence of diet on the gut microbiome and implications for human health , 2017, Journal of Translational Medicine.

[26]  Robert A. Edwards,et al.  PARTIE: a partition engine to separate metagenomic and amplicon projects in the Sequence Read Archive , 2017, Bioinform..

[27]  Wayne Aubrey,et al.  Probabilistic recovery of cryptic haplotypes from metagenomic data , 2017, bioRxiv.

[28]  Benjamin J. Callahan,et al.  Exact sequence variants should replace operational taxonomic units in marker gene data analysis , 2017 .

[29]  Evelien M. Adriaenssens,et al.  How to Name and Classify Your Phage: An Informal Guide , 2017, bioRxiv.

[30]  E. KnudsenBerith,et al.  SOP - DNA Isolation QIAamp Fast DNA Stool Modified , 2016 .

[31]  Benjamin Bolduc,et al.  Healthy human gut phageome , 2016, Proceedings of the National Academy of Sciences.

[32]  Y. Tong,et al.  crAssphage is not associated with diarrhoea and has high genetic diversity , 2016, Epidemiology and Infection.

[33]  Howard Ochman,et al.  Cospeciation of gut microbiota with hominids , 2016, Science.

[34]  Eric A. Franzosa,et al.  Variation in Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans , 2016, Cell.

[35]  Morris A. Swertz,et al.  Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity , 2016, Science.

[36]  Peer Bork,et al.  Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees , 2016, Nucleic Acids Res..

[37]  P. Bork,et al.  ETE 3: Reconstruction, Analysis, and Visualization of Phylogenomic Data , 2016, Molecular biology and evolution.

[38]  Ron Milo,et al.  Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans , 2016, Cell.

[39]  Thomas Rattei,et al.  The 5300-year-old Helicobacter pylori genome of the Iceman , 2016, Science.

[40]  Bas E. Dutilh,et al.  Computational approaches to predict bacteriophage–host relationships , 2015, FEMS microbiology reviews.

[41]  Huang Gao,et al.  Database resources of the National Center for Biotechnology Information , 2015, Nucleic Acids Res..

[42]  F. Raymond,et al.  The initial state of the human gut microbiome determines its reshaping by antibiotics , 2015, The ISME Journal.

[43]  S. Dowd,et al.  Natural mummification of the human gut preserves bacteriophage DNA. , 2016, FEMS microbiology letters.

[44]  F. Bäckhed,et al.  Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. , 2015, Cell metabolism.

[45]  Yanjiao Zhou,et al.  Early life dynamics of the human gut virome and bacterial microbiome in infants , 2015, Nature Medicine.

[46]  A. Zhernakova,et al.  Cohort profile: LifeLines DEEP, a prospective, general population cohort study in the northern Netherlands: study design and baseline characteristics , 2015, BMJ Open.

[47]  Ian T. Foster,et al.  Jetstream: a self-provisioned, scalable science and engineering cloud environment , 2015, XSEDE.

[48]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[49]  H. Ochman,et al.  Rapid changes in the gut microbiome during human evolution , 2014, Proceedings of the National Academy of Sciences.

[50]  K. Bibby,et al.  Metagenomic Evaluation of the Highly Abundant Human Gut Bacteriophage CrAssphage for Source Tracking of Human Fecal Pollution , 2014 .

[51]  Nancy Wilkins-Diehr,et al.  XSEDE: Accelerating Scientific Discovery , 2014, Computing in Science & Engineering.

[52]  R. Edwards,et al.  A highly abundant bacteriophage discovered in the unknown sequences of human faecal metagenomes , 2014, Nature Communications.

[53]  B. Snel,et al.  The Histone Modification H3K27me3 Is Retained after Gene Duplication and Correlates with Conserved Noncoding Sequences in Arabidopsis , 2014, Genome biology and evolution.

[54]  Lawrence A. David,et al.  Diet rapidly and reproducibly alters the human gut microbiome , 2013, Nature.

[55]  Frederic D Bushman,et al.  Rapid evolution of the human gut virome , 2013, Proceedings of the National Academy of Sciences.

[56]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[57]  K. Katoh,et al.  Improvements in Performance and Usability , 2013 .

[58]  Forest Rohwer,et al.  Going viral: next-generation sequencing applied to phage populations in the human gut , 2012, Nature Reviews Microbiology.

[59]  Sergey I. Nikolenko,et al.  SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing , 2012, J. Comput. Biol..

[60]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[61]  J. Clemente,et al.  Human gut microbiome viewed across age and geography , 2012, Nature.

[62]  Yongan Zhao,et al.  RAPSearch2: a fast and memory-efficient protein similarity search tool for next-generation sequencing data , 2011, Bioinform..

[63]  D. Higgins,et al.  Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega , 2011, Molecular systems biology.

[64]  F. Bushman,et al.  The human gut virome: inter-individual variation and dynamic response to diet. , 2011, Genome research.

[65]  Robert A. Edwards,et al.  Quality control and preprocessing of metagenomic datasets , 2011, Bioinform..

[66]  S. Massart,et al.  Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa , 2010, Proceedings of the National Academy of Sciences.

[67]  Forest Rohwer,et al.  Viruses in the fecal microbiota of monozygotic twins and their mothers , 2010, Nature.

[68]  Neil Hall,et al.  Antagonistic coevolution accelerates molecular evolution , 2010, Nature.

[69]  Miriam L. Land,et al.  Trace: Tennessee Research and Creative Exchange Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification Recommended Citation Prodigal: Prokaryotic Gene Recognition and Translation Initiation Site Identification , 2022 .

[70]  R. Knight,et al.  The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice , 2009, Science Translational Medicine.

[71]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[72]  Andreas Wilke,et al.  phylogenetic and functional analysis of metagenomes , 2022 .

[73]  Bas E. Dutilh,et al.  Assessment of phylogenomic and orthology approaches for phylogenetic inference , 2007, Bioinform..

[74]  M. Breitbart,et al.  Phage Community Dynamics in Hot Springs , 2004, Applied and Environmental Microbiology.

[75]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[76]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[77]  C. Russo,et al.  Timing the origin of New World monkeys. , 2003, Molecular biology and evolution.

[78]  W. Jacobs,et al.  Origins of Highly Mosaic Mycobacteriophage Genomes , 2003, Cell.

[79]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[80]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[81]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.

[82]  David C. Smith,et al.  Abundance and production of bacteria and viruses in the Bering and Chukchi Seas , 1996 .

[83]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[84]  Richard M. Stallman,et al.  Gnu Make: A Program For Directing Recompilation, For Version 3.81 , 1994 .

[85]  G. Bratbak,et al.  Production and decay of viruses in aquatic environments , 1991 .

[86]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.