On the Dynamics of Cellular Automata with Memory

Elementary cellular automata ECA are linear arrays of finite-state machines cells which take binary states, and update their states simultaneously depending on states of their closest neighbours. We design and study ECA with memory ECAM, where every cell remembers its states during some fixed period of evolution. We characterize complexity of ECAM in a case study of rule 126, and then provide detailed behavioural classification of ECAM. We show that by enriching ECA with memory we can achieve transitions between the classes of behavioural complexity. We also show that memory helps to 'discover' hidden information and behaviour on trivial uniform, periodic, and non-trivial chaotic, complex dynamical systems.

[1]  Andrew Adamatzky,et al.  Phenomenology of glider collisions in cellular automaton Rule 54 and associated logical gates , 2006 .

[2]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[3]  Juan Carlos Seck Tuoh Mora,et al.  How to make dull cellular automata complex by adding memory: Rule 126 case study , 2010, Complex..

[4]  H. McIntosh Wolfram's class IV automata and good life , 1990 .

[5]  Michael A. Arbib,et al.  Theories of abstract automata , 1969, Prentice-Hall series in automatic computation.

[6]  Alistair I. Mees,et al.  Modelling Complex Systems , 1990 .

[7]  J. Schwartz,et al.  Theory of Self-Reproducing Automata , 1967 .

[8]  Stephen Wolfram,et al.  Theory and Applications of Cellular Automata , 1986 .

[9]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[10]  Ramón Alonso-Sanz Discrete Systems With Memory , 2011 .

[11]  Andrew Adamatzky,et al.  On Memory and Structural Dynamism in Excitable Cellular Automata with Defensive Inhibition , 2008, Int. J. Bifurc. Chaos.

[12]  Yurii Rogozhin,et al.  Small Universal Turing Machines , 1996, Theor. Comput. Sci..

[13]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[14]  S. Amoroso,et al.  The Garden-of-Eden theorem for finite configurations , 1970 .

[15]  Juan Carlos Seck Tuoh Mora,et al.  Gliders in Rule 110 , 2006, Int. J. Unconv. Comput..

[16]  Andrew Adamatzky,et al.  Are complex systems hard to evolve? , 2008, Complex..

[17]  Leon O. Chua,et al.  On Soliton Collisions between Localizations in Complex Elementary Cellular Automata: Rules 54 and 110 and Beyond , 2012, Complex Syst..

[18]  Michel Droz,et al.  Cellular Automata Modeling of Physical Systems (Collection Alea-Saclay: Monographs and Texts in Statistical Physics) , 2022 .

[19]  Doreen Schweizer,et al.  Cellular Automata And Complexity Collected Papers , 2016 .

[20]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[21]  Burton Voorhees Remarks on Applications of De Bruijn Diagrams and Their Fragments , 2008, J. Cell. Autom..

[22]  Marvin Minsky,et al.  Computation : finite and infinite machines , 2016 .

[23]  Genaro Juárez Martínez,et al.  Designing Complex Dynamics in Cellular Automata with Memory , 2013, Int. J. Bifurc. Chaos.

[24]  Tommaso Toffoli,et al.  Cellular Automata as an Alternative to (Rather than an Approximation of) Differential Equations in M , 1984 .

[25]  Ramón Alonso-Sanz Elementary Cellular Automata with Memory of Delay Type , 2013, Automata.

[26]  Karel Culik,et al.  Undecidability of CA Classification Schemes , 1988, Complex Syst..

[27]  Ramón Alonso-Sanz,et al.  Elementary Cellular Automata with Elementary Memory Rules in Cells: The Case of Linear Rules , 2006, J. Cell. Autom..

[28]  Klaus Sutner,et al.  Computation theory of cellular automata , 1998 .

[29]  A. Wuensche Classifying cellular automata automatically: finding gliders, filtering, and relating space-time patterns, attractor basins, and the Z parameter , 1999 .

[30]  Ramón Alonso-Sanz Reversible cellular automata with memory of delay type , 2014, Complex..

[31]  Ramón Alonso-Sanz,et al.  Cellular Automata with Memory , 2009, Encyclopedia of Complexity and Systems Science.

[32]  Peter M. A. Sloot,et al.  Simulating Complex Systems by Cellular Automata , 2010, Simulating Complex Systems by Cellular Automata.

[33]  T. Czárán The global dynamics of cellular automata: by Andrew Wuensche and Mike Lesser, Addison-Wesley, 1992. £39.69 hbk (xvii + 250 pages) ISBN 0 201 55740 1 , 1993 .

[34]  Juan Carlos Seck Tuoh Mora,et al.  Complex Dynamics Emerging in Rule 30 with Majority Memory , 2009, Complex Syst..

[35]  Andrew Adamatzky,et al.  Language networks: Their structure, function, and evolution , 2010 .

[36]  Harold V. McIntosh One Dimensional Cellular Automata , 2009 .

[37]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[38]  A. Wuensche Classifying Cellular Automata Automatically , 1998 .

[39]  Kenichi Morita,et al.  Cellular Automata and Artificial Life , 2001 .

[40]  Yurii Rogozhin,et al.  On the Rule Complexity of Universal Tissue P Systems , 2005, Workshop on Membrane Computing.

[41]  A. Adamatzky,et al.  Complex dynamics of cellular automata emerging in chaotic rules , 2009 .

[42]  B. Voorhees Computational Analysis of One-Dimensional Cellular Automata , 1995 .

[43]  Michael A Arbib,et al.  Theories of abstract automata (Prentice-Hall series in automatic computation) , 1969 .

[44]  Genaro Juárez Martínez A Note on Elementary Cellular Automata Classification , 2013, J. Cell. Autom..

[45]  Genaro Juárez Martínez,et al.  Complete Characterization of Structure of Rule 54 , 2014, Complex Syst..