Convex dynamics: properties of invariant sets

A greedy algorithm for scheduling and digital printing with inputs in a polytope lying in an affine space, and vertices of this polytope as successive outputs, has recently been proven to be bounded for any polytope in any dimension in the case when the norm on errors is the Euclidean norm. This boundedness property follows readily from the existence of some invariant sets (both in the affine space and in the associated vector space), for the dynamics associated to the algorithm. We prove several general properties of such invariant sets under the assumption that the greed of the algorithm is driven by the Euclidean norm.

[1]  N. Haydn,et al.  Topological entropy of generalized polygon exchanges , 1995, math/9501227.

[2]  M. Keane,et al.  Non-ergodic interval exchange transformations , 1977 .

[3]  W. Veech Interval exchange transformations , 1978 .

[4]  C. Tresser,et al.  Convex dynamics: unavoidable difficulties in bounding some greedy algorithms. , 2004, Chaos.

[5]  G. L. Dirichlet Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen. , 1850 .

[6]  Henry R. Kang Color Technology for Electronic Imaging Devices , 1997 .

[7]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les parallélloèdres primitifs. , 1908 .

[8]  Sofic subshifts and piecewise isometric systems , 1999, Ergodic Theory and Dynamical Systems.

[9]  L. Chua,et al.  On chaos of digital filters in the real world , 1991 .

[10]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[11]  Arek Goetz Stability of piecewise rotations and affine maps , 2001 .

[12]  Chai Wah Wu,et al.  The mathematics of halftoning , 2003, IBM J. Res. Dev..

[13]  Georges Voronoi Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .

[14]  Leon O. Chua,et al.  Chaos in digital filters , 1988 .

[15]  John F. Jarvis,et al.  A survey of techniques for the display of continuous tone pictures on bilevel displays , 1976 .

[16]  A. Goetz Dynamics of piecewise isometries , 2000 .

[17]  Kurt Mehlhorn,et al.  Data Structures and Algorithms 3: Multi-dimensional Searching and Computational Geometry , 2012, EATCS Monographs on Theoretical Computer Science.

[18]  H. Masur Interval Exchange Transformations and Measured Foliations , 1982 .

[19]  R. Adler,et al.  Dynamics of non-ergodic piecewise affine maps of the torus , 2001, Ergodic Theory and Dynamical Systems.

[20]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[21]  Robert Tijdeman The chairman assignment problem , 1980, Discret. Math..

[22]  Chai Wah Wu,et al.  Error bounds for error diffusion and related digital halftoning algorithms , 2001, ISCAS 2001. The 2001 IEEE International Symposium on Circuits and Systems (Cat. No.01CH37196).

[23]  Chai Wah Wu,et al.  Error bounds for error diffusion and other mathematical problems arising in digital halftoning , 1999, Electronic Imaging.

[24]  M. Keane Interval exchange transformations , 1975 .

[25]  C. Boldrighini,et al.  Billiards in Polygons , 1978 .