Biotechnological exploitation of microalgae.

Microalgae are a diverse group of single-cell photosynthetic organisms that include cyanobacteria and a wide range of eukaryotic algae. A number of microalgae contain high-value compounds such as oils, colorants, and polysaccharides, which are used by the food additive, oil, and cosmetic industries, among others. They offer the potential for rapid growth under photoautotrophic conditions, and they can grow in a wide range of habitats. More recently, the development of genetic tools means that a number of species can be transformed and hence used as cell factories for the production of high-value chemicals or recombinant proteins. In this article, we review exploitation use of microalgae with a special emphasis on genetic engineering approaches to develop cell factories, and the use of synthetic ecology approaches to maximize productivity. We discuss the success stories in these areas, the hurdles that need to be overcome, and the potential for expanding the industry in general.

[1]  Peter Berthold,et al.  An engineered Streptomyces hygroscopicus aph 7" gene mediates dominant resistance against hygromycin B in Chlamydomonas reinhardtii. , 2002, Protist.

[2]  W. Gerwick,et al.  Antitumor Activity of Hierridin B, a Cyanobacterial Secondary Metabolite Found in both Filamentous and Unicellular Marine Strains , 2013, PloS one.

[3]  Ice recrystallization inhibition mediated by a nuclear-expressed and -secreted recombinant ice-binding protein in the microalga Chlamydomonas reinhardtii , 2013, Applied Microbiology and Biotechnology.

[4]  P. Wright,et al.  Exploiting cyanobacterial P450 pathways. , 2010, Current opinion in microbiology.

[5]  S. Sasso,et al.  Mutualistic interactions between vitamin B12 -dependent algae and heterotrophic bacteria exhibit regulation. , 2012, Environmental microbiology.

[6]  K. Richards,et al.  Engineering the chloroplast genome: techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[7]  A Simple and Non-Invasive Method for Nuclear Transformation of Intact-walled Chlamydomonas reinhardtii , 2014, PloS one.

[8]  C. Howe,et al.  An Engineered Community Approach for Industrial Cultivation of Microalgae. , 2014, Industrial biotechnology.

[9]  Laureano Jiménez,et al.  Microalgae-based biodiesel: economic analysis of downstream process realistic scenarios. , 2013, Bioresource technology.

[10]  S. Boussiba,et al.  Advances in the Production of High-Value Products by Microalgae , 2014 .

[11]  C. Sorokin New High-Temperature Chlorella , 1967, Science.

[12]  Yinü Li,et al.  Recombination and expression of classical swine fever virus (CSFV) structural protein E2 gene in Chlamydomonas reinhardtii chroloplasts. , 2007, Colloids and surfaces. B, Biointerfaces.

[13]  T. Dunahay,et al.  Transformation of Chlamydomonas reinhardtii with silicon carbide whiskers. , 1993, BioTechniques.

[14]  G. Pinto,et al.  Engineered tobacco and microalgae secreting the fungal laccase POXA1b reduce phenol content in olive oil mill wastewater. , 2011, Enzyme and microbial technology.

[15]  F. Bux,et al.  Biodiesel from microalgae: A critical evaluation from laboratory to large scale production , 2013 .

[16]  I. Barshack,et al.  A 9-cis β-Carotene–Enriched Diet Inhibits Atherogenesis and Fatty Liver Formation in LDL Receptor Knockout Mice , 2008 .

[17]  Y. Xue,et al.  Functional expression of an Arabidopsis p450 enzyme, p-coumarate-3-hydroxylase, in the cyanobacterium Synechocystis PCC 6803 for the biosynthesis of caffeic acid , 2014, Journal of Applied Phycology.

[18]  Lu Zhang,et al.  Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. , 2000, Plant physiology.

[19]  S. Purton,et al.  ALGAL TRANSGENICS IN THE GENOMIC ERA 1 , 2005 .

[20]  M. Takriff,et al.  An overview: biomolecules from microalgae for animal feed and aquaculture , 2014, Journal of Biological Research-Thessaloniki.

[21]  R. Dixit,et al.  Cyanobacteria: potential candidates for drug discovery , 2013, Antonie van Leeuwenhoek.

[22]  A. Grossman,et al.  Trophic Conversion of an Obligate Photoautotrophic Organism Through Metabolic Engineering , 2001, Science.

[23]  S. Purton,et al.  GENETIC ENGINEERING OF EUKARYGTIC ALGAE: PROGRESS AND PROSPECTS , 1997 .

[24]  Hanhua Hu,et al.  High-efficiency nuclear transformation of the diatom Phaeodactylum tricornutum by electroporation. , 2014, Marine genomics.

[25]  C. Olsen,et al.  Redirecting photosynthetic reducing power toward bioactive natural product synthesis. , 2013, ACS synthetic biology.

[26]  J. Molgó,et al.  Neurotoxic cyanobacterial toxins. , 2010, Toxicon : official journal of the International Society on Toxinology.

[27]  F. Schmidt,et al.  Recombinant expression systems in the pharmaceutical industry , 2004, Applied Microbiology and Biotechnology.

[28]  Jack Bui,et al.  Production of anti‐cancer immunotoxins in algae: Ribosome inactivating proteins as fusion partners , 2013, Biotechnology and bioengineering.

[29]  S. Baek,et al.  Beneficial immunostimulatory effect of short-term Chlorella supplementation: enhancement of Natural Killer cell activity and early inflammatory response (Randomized, double-blinded, placebo-controlled trial) , 2012, Nutrition Journal.

[30]  J. Pandhal,et al.  Synthetic microbial ecosystems for biotechnology , 2014, Biotechnology Letters.

[31]  M. McCarty,et al.  Clinical potential of Spirulina as a source of phycocyanobilin. , 2007, Journal of medicinal food.

[32]  M. Guiry,et al.  HOW MANY SPECIES OF ALGAE ARE THERE? , 2012, Journal of phycology.

[33]  Matthew A. A. Grant,et al.  Direct exchange of vitamin B12 is demonstrated by modelling the growth dynamics of algal–bacterial cocultures , 2014, The ISME Journal.

[34]  A. Melis,et al.  Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. , 2014, Molecular plant.

[35]  S. Qiu,et al.  Selenoprotein-Transgenic Chlamydomonas reinhardtii , 2013, Nutrients.

[36]  V. Danilenko,et al.  Stable nuclear transformation of Chlamydomonas reinhardtii with a Streptomyces rimosus gene as the selective marker. , 1996, Gene.

[37]  A. Grossman,et al.  Expression of the arylsulfatase gene from the beta 2-tubulin promoter in Chlamydomonas reinhardtii. , 1992, Nucleic acids research.

[38]  K B Taylor,et al.  Expression of a foreign gene in Chlamydomonas reinhardtii. , 1993, Gene.

[39]  A. Falciatore,et al.  Transformation of Nonselectable Reporter Genes in Marine Diatoms , 1999, Marine Biotechnology.

[40]  S. Arad,et al.  Activity of Porphyridium sp. polysaccharide against herpes simplex viruses in vitro and in vivo. , 2002, Journal of biochemical and biophysical methods.

[41]  P. Hegemann,et al.  A synthetic gene coding for the green fluorescent protein (GFP) is a versatile reporter in Chlamydomonas reinhardtii. , 1999, The Plant journal : for cell and molecular biology.

[42]  D. Weeks,et al.  Molecular analysis of the acetolactate synthase gene of Chlamydomonas reinhardtii and development of a genetically engineered gene as a dominant selectable marker for genetic transformation. , 2002, The Plant journal : for cell and molecular biology.

[43]  John G. Day,et al.  Overcoming biological constraints to enable the exploitation of microalgae for biofuels. , 2012, Bioresource technology.

[44]  M. Reis,et al.  Strategies for PHA production by mixed cultures and renewable waste materials , 2008, Applied Microbiology and Biotechnology.

[45]  Daniel Segrè,et al.  Environments that Induce Synthetic Microbial Ecosystems , 2010, PLoS Comput. Biol..

[46]  D. Vaulot,et al.  Unicellular Cyanobacterium Symbiotic with a Single-Celled Eukaryotic Alga , 2012, Science.

[47]  C. Gudin,et al.  Bioconversion of solar energy into organic chemicals by microalgae , 1986 .

[48]  Elizabeth A Specht,et al.  Algae-based oral recombinant vaccines , 2014, Front. Microbiol..

[49]  E. Litchman,et al.  Community Ecology of Algal Biofuels: Complementarity and Trait-Based Approaches , 2014 .

[50]  V. S. Reddy,et al.  Genetic transformation of the green alga: Chlamydomonas reinhardtii by Agrobacterium tumefaciens , 2004 .

[51]  Miller Tran,et al.  Chlamydomonas reinhardtii chloroplasts as protein factories. , 2007, Current opinion in biotechnology.

[52]  Xueli Zhang,et al.  Yeast synthetic biology for high-value metabolites. , 2014, FEMS yeast research.

[53]  P. Azadi,et al.  Vaccination against Influenza with Recombinant Hemagglutinin Expressed by Schizochytrium sp. Confers Protective Immunity , 2013, PloS one.

[54]  W. Richard,et al.  TEMPERATURE AND PHYTOPLANKTON GROWTH IN THE SEA , 1972 .

[55]  N. Frigaard,et al.  Engineering of photosynthetic mannitol biosynthesis from CO2 in a cyanobacterium. , 2014, Metabolic engineering.

[56]  R. McBride,et al.  Contamination Management in Low Cost Open Algae Ponds for Biofuels Production , 2014 .

[57]  S. Briggs,et al.  Robust Expression and Secretion of Xylanase1 in Chlamydomonas reinhardtii by Fusion to a Selection Gene and Processing with the FMDV 2A Peptide , 2012, PloS one.

[58]  Imogen Foubert,et al.  Nutritional evaluation of microalgae oils rich in omega-3 long chain polyunsaturated fatty acids as an alternative for fish oil. , 2014, Food chemistry.

[59]  D. Hall,et al.  The stability of electron transport in in vitro chloroplast membranes , 2004, Photosynthesis Research.

[60]  J. Rochaix,et al.  The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. , 1989, The EMBO journal.

[61]  L. T. Tan Pharmaceutical agents from filamentous marine cyanobacteria. , 2013, Drug discovery today.

[62]  Ling Tao,et al.  Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803 , 2012 .

[63]  A. Grossman,et al.  High-efficiency transformation of Chlamydomonas reinhardtii by electroporation. , 1998, Genetics.

[64]  Ovidiu Ruecker,et al.  Gaussia-luciferase as a sensitive reporter gene for monitoring promoter activity in the nucleus of the green alga Chlamydomonas reinhardtii , 2008, Molecular Genetics and Genomics.

[65]  B. Møller,et al.  Light-driven cytochrome p450 hydroxylations. , 2011, ACS chemical biology.

[66]  Val H. Smith,et al.  Applying ecological principles of crop cultivation in large-scale algal biomass production , 2014 .

[67]  C. Posten,et al.  Investigating the dynamics of recombinant protein secretion from a microalgal host. , 2015, Journal of biotechnology.

[68]  Miller Tran,et al.  Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. , 2007, Plant biotechnology journal.

[69]  Peter Hegemann,et al.  Monitoring dynamic expression of nuclear genes in Chlamydomonas reinhardtii by using a synthetic luciferase reporter gene , 2004, Plant Molecular Biology.

[70]  John T. Chang,et al.  Algal chloroplast produced camelid VH H antitoxins are capable of neutralizing botulinum neurotoxin. , 2015, Plant biotechnology journal.

[71]  D. Meldrum,et al.  Engineering cyanobacteria for photosynthetic production of 3-hydroxybutyrate directly from CO2. , 2013, Metabolic engineering.

[72]  Teresa M. Mata,et al.  Microalgae for biodiesel production and other applications: A review , 2010 .

[73]  P. Lefebvre,et al.  Targeted disruption of the NIT8 gene in Chlamydomonas reinhardtii , 1995, Molecular and cellular biology.

[74]  M. Burns,et al.  Microdroplet-Enabled Highly Parallel Co-Cultivation of Microbial Communities , 2011, PloS one.

[75]  Birger Lindberg Møller,et al.  Redirecting photosynthetic electron flow into light-driven synthesis of alternative products including high-value bioactive natural compounds. , 2014, ACS synthetic biology.

[76]  S. Briggs,et al.  Heterologous expression of the C-terminal antigenic domain of the malaria vaccine candidate Pfs48/45 in the green algae Chlamydomonas reinhardtii , 2012, Applied Microbiology and Biotechnology.

[77]  S. Mayfield,et al.  Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses , 2014, Photosynthesis Research.

[78]  K. Nicolaou,et al.  Total synthesis of taxol. , 2010 .

[79]  C. Deng,et al.  Brentuximab Vedotin , 2012, Clinical Cancer Research.

[80]  Huiyun Chang,et al.  Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast , 2003, Biotechnology Letters.

[81]  T M Klein,et al.  Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. , 1988, Science.

[82]  Jo‐Shu Chang,et al.  Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. , 2011, Bioresource technology.

[83]  Gerrit Brem,et al.  Assessment of a dry and a wet route for the production of biofuels from microalgae: energy balance analysis. , 2011, Bioresource technology.

[84]  P. T. Pratheesh,et al.  An Efficient Protocol for the Agrobacterium-mediated Genetic Transformation of Microalga Chlamydomonas reinhardtii , 2014, Molecular Biotechnology.

[85]  Gokare A. Ravishankar,et al.  Astaxanthin: Sources, Extraction, Stability, Biological Activities and Its Commercial Applications—A Review , 2014, Marine drugs.

[86]  S. Purton,et al.  Genetic engineering of algal chloroplasts: Progress and prospects , 2013, Russian Journal of Plant Physiology.

[87]  M. Fukuoka,et al.  The novel microtubule-interfering agent TZT-1027 enhances the anticancer effect of radiation in vitro and in vivo , 2007, British Journal of Cancer.

[88]  C. Hagen,et al.  Ultrastructural and chemical changes in the cell wall of Haematococcus pluvialis (Volvocales, Chlorophyta) during aplanospore formation , 2002 .

[89]  P. Silver,et al.  Engineering Cyanobacteria To Synthesize and Export Hydrophilic Products , 2010, Applied and Environmental Microbiology.

[90]  M. Koffas,et al.  Metabolic engineering for plant natural product biosynthesis in microbes. , 2008, Current opinion in biotechnology.

[91]  Martin J. Warren,et al.  Algae acquire vitamin B12 through a symbiotic relationship with bacteria , 2005, Nature.

[92]  Yin Li,et al.  Engineering cyanobacteria for fuels and chemicals production , 2010, Protein & Cell.

[93]  J. Choi,et al.  Defined spatial structure stabilizes a synthetic multispecies bacterial community , 2008, Proceedings of the National Academy of Sciences.

[94]  Aaron Marc Saunders,et al.  Identification and comparison of aerobic and denitrifying polyphosphate-accumulating organisms. , 2003, Biotechnology and bioengineering.

[95]  R. Weiss,et al.  Programmed population control by cell–cell communication and regulated killing , 2004, Nature.

[96]  L. Curatti,et al.  Association with an Ammonium-Excreting Bacterium Allows Diazotrophic Culture of Oil-Rich Eukaryotic Microalgae , 2012, Applied and Environmental Microbiology.

[97]  H. Fukuzawa,et al.  Rapid transformation of Chlamydomonas reinhardtii without cell-wall removal. , 2013, Journal of bioscience and bioengineering.

[98]  Christoph Griesbeck,et al.  Chlamydomonas reinhardtii , 2006, Molecular biotechnology.

[99]  S. Mayfield,et al.  Production of recombinant proteins in microalgae at pilot greenhouse scale , 2015, Biotechnology and bioengineering.

[100]  K. Kindle High-frequency nuclear transformation of Chlamydomonas reinhardtii. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[101]  Oliver Spadiut,et al.  Microbials for the production of monoclonal antibodies and antibody fragments , 2014, Trends in biotechnology.

[102]  S. Qin,et al.  Chloroplast Transformation of Platymonas (Tetraselmis) subcordiformis with the bar Gene as Selectable Marker , 2014, PloS one.

[103]  A. Grossman,et al.  Stable nuclear transformation of the diatom , 1996 .

[104]  A. Berchuck,et al.  TRANSGENIC MICROALGAE AS GREEN CELL FACTORIES , 2013 .

[105]  Erik F. Y. Hom,et al.  Niche engineering demonstrates a latent capacity for fungal-algal mutualism , 2014, Science.

[106]  Gerard Muyzer,et al.  Enrichment of a mixed bacterial culture with a high polyhydroxyalkanoate storage capacity. , 2009, Biomacromolecules.

[107]  P. Webley,et al.  Extraction of oil from microalgae for biodiesel production: A review. , 2012, Biotechnology advances.

[108]  S. Mayfield,et al.  Algae-Produced Pfs25 Elicits Antibodies That Inhibit Malaria Transmission , 2012, PloS one.

[109]  K. Lauersen,et al.  Efficient recombinant protein production and secretion from nuclear transgenes in Chlamydomonas reinhardtii. , 2013, Journal of biotechnology.

[110]  M. Goldschmidt-Clermont,et al.  Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker of site-directed transformation of chlamydomonas. , 1991, Nucleic acids research.

[111]  Bin Zhou,et al.  Synthesis and assembly of a full‐length human monoclonal antibody in algal chloroplasts , 2009, Biotechnology and bioengineering.

[112]  C. Howe,et al.  Biodiesel from algae: challenges and prospects. , 2010, Current opinion in biotechnology.

[113]  N. M. Yasin,et al.  Comparison of harvesting methods for microalgae Chlorella sp. and its potential use as a biodiesel feedstock , 2014, Environmental technology.

[114]  S. Mayfield,et al.  Alga-Produced Cholera Toxin-Pfs25 Fusion Proteins as Oral Vaccines , 2013, Applied and Environmental Microbiology.

[115]  M. Wu,et al.  Insertion mutagenesis of Chlamydomonas reinhardtii by electroporation and heterologous DNA. , 1995, Biochemistry and molecular biology international.

[116]  A. Grossman,et al.  Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes , 2000 .

[117]  S. Purton,et al.  Expression and membrane-targeting of an active plant cytochrome P450 in the chloroplast of the green alga Chlamydomonas reinhardtii. , 2015, Phytochemistry.

[118]  U. Maier,et al.  An engineered diatom acting like a plasma cell secreting human IgG antibodies with high efficiency , 2012, Microbial Cell Factories.

[119]  Anne M. Ruffing Improved Free Fatty Acid Production in Cyanobacteria with Synechococcus sp. PCC 7002 as Host , 2014, Front. Bioeng. Biotechnol..

[120]  C. Nielsen,et al.  Enhancement of natural killer cell activity in healthy subjects by Immulina®, a Spirulina extract enriched for Braun-type lipoproteins. , 2010, Planta medica.

[121]  L. Curatti,et al.  High lipid productivity of an Ankistrodesmus-Rhizobium artificial consortium. , 2013, Bioresource technology.

[122]  Richard A Lerner,et al.  Expression and assembly of a fully active antibody in algae , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[123]  L. Curatti,et al.  Metabolic engineering of ammonium release for nitrogen-fixing multispecies microbial cell-factories. , 2014, Metabolic engineering.

[124]  K. Hellingwerf,et al.  Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803 , 2014, Biotechnology for Biofuels.

[125]  U. Maier,et al.  Algae as Protein Factories: Expression of a Human Antibody and the Respective Antigen in the Diatom Phaeodactylum tricornutum , 2011, PloS one.

[126]  G. Giuliano,et al.  A Chlamydomonas-Derived Human Papillomavirus 16 E7 Vaccine Induces Specific Tumor Protection , 2013, PloS one.

[127]  S. Mayfield,et al.  Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. , 2010, Plant biotechnology journal.

[128]  N. T. Eriksen,et al.  Purification of the photosynthetic pigment C-phycocyanin from heterotrophic Galdieria sulphuraria. , 2013, Journal of the science of food and agriculture.

[129]  M. Minami,et al.  Antitumor activity of TZT-1027 (Soblidotin). , 2006, Anticancer research.

[130]  M. Miyahara,et al.  Highly Efficient Transformation of the Diatom Phaeodactylum tricornutum by Multi-Pulse Electroporation , 2013, Bioscience, biotechnology, and biochemistry.

[131]  G. Kovács,et al.  Artificial tripartite symbiosis involving a green alga (Chlamydomonas), a bacterium (Azotobacter) and a fungus (Alternaria): Morphological and physiological characterization , 2010, Folia Microbiologica.

[132]  R. Bock,et al.  Solar-powered factories for new vaccines and antibiotics. , 2010, Trends in biotechnology.

[133]  S. Mayfield,et al.  Production of unique immunotoxin cancer therapeutics in algal chloroplasts , 2012, Proceedings of the National Academy of Sciences.

[134]  Wael Sabra,et al.  Biosystems analysis and engineering of microbial consortia for industrial biotechnology , 2010 .

[135]  Xiaoxia Nina Lin,et al.  A Programmable Escherichia coli Consortium via Tunable Symbiosis , 2012, PloS one.

[136]  Jungmin Kim,et al.  Methods of downstream processing for the production of biodiesel from microalgae. , 2013, Biotechnology advances.

[137]  Elizabeth A Specht,et al.  Synthetic oligonucleotide libraries reveal novel regulatory elements in Chlamydomonas chloroplast mRNAs. , 2013, ACS synthetic biology.

[138]  Philip Owende,et al.  Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products , 2010 .

[139]  S. Purton,et al.  Tools and techniques for chloroplast transformation of Chlamydomonas. , 2007, Advances in experimental medicine and biology.

[140]  Joaquim M. S. Cabral,et al.  Supercritical CO2 extraction of carotenoids and other lipids from Chlorella vulgaris , 1995 .

[141]  C. Olsen,et al.  Anchoring a Plant Cytochrome P450 via PsaM to the Thylakoids in Synechococcus sp. PCC 7002: Evidence for Light-Driven Biosynthesis , 2014, PloS one.

[142]  V. Siewers,et al.  Ach1 is involved in shuttling mitochondrial acetyl units for cytosolic C2 provision in Saccharomyces cerevisiae lacking pyruvate decarboxylase. , 2015, FEMS yeast research.

[143]  L E Brown,et al.  Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation , 1991, Molecular and cellular biology.

[144]  Helena M. Amaro,et al.  Advances and perspectives in using microalgae to produce biodiesel , 2011 .

[145]  M. Loosdrecht,et al.  Survival of the fattest , 2013 .

[146]  P. Lefebvre,et al.  Stable nuclear transformation of Chlamydomonas using the Chlamydomonas gene for nitrate reductase , 1989, The Journal of cell biology.

[147]  Armin Hallmann,et al.  Algal transgenics and biotechnology , 2007 .

[148]  R. Sathishkumar,et al.  Construction of Novel Chloroplast Expression Vector and Development of an Efficient Transformation System for the Diatom Phaeodactylum tricornutum , 2014, Marine Biotechnology.

[149]  Bruce C. Parker,et al.  AlgaeBase: An On-line Resource for Algae , 2014 .

[150]  Y. Chisti,et al.  Recovery of microalgal biomass and metabolites: process options and economics. , 2003, Biotechnology advances.

[151]  S. Purton,et al.  A simple, low-cost method for chloroplast transformation of the green alga Chlamydomonas reinhardtii. , 2014, Methods in molecular biology.

[152]  A. Melis,et al.  Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga) , 2002, Planta.

[153]  M. Borowitzka High-value products from microalgae—their development and commercialisation , 2013, Journal of Applied Phycology.

[154]  A. Melis,et al.  Paradigm of Monoterpene (β-phellandrene) Hydrocarbons Production via Photosynthesis in Cyanobacteria , 2013, BioEnergy Research.

[155]  S. Kim,et al.  Transgenic microalgae expressing Escherichia coli AppA phytase as feed additive to reduce phytate excretion in the manure of young broiler chicks , 2011, Applied Microbiology and Biotechnology.

[156]  J. Zehr,et al.  Genetic engineering of multispecies microbial cell factories as an alternative for bioenergy production. , 2013, Trends in biotechnology.

[157]  Martin Fussenegger,et al.  Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection. , 2010, Journal of biotechnology.

[158]  J. Nield,et al.  A highly active histidine-tagged Chlamydomonas reinhardtii Photosystem II preparation for structural and biophysical analysis. , 2007, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[159]  Ovidiu Ruecker,et al.  Strategies to facilitate transgene expression in Chlamydomonas reinhardtii , 2009, Planta.

[160]  B. Philipp,et al.  Design of synthetic microbial communities for biotechnological production processes. , 2014, Journal of biotechnology.

[161]  Krishan K. Pandey,et al.  A review on harvesting, oil extraction and biofuels production technologies from microalgae , 2013 .

[162]  R. Kolter,et al.  Roseobacticides: Small Molecule Modulators of an Algal-Bacterial Symbiosis , 2011, Journal of the American Chemical Society.

[163]  J. Rochaix,et al.  The bacterial phleomycin resistance gene , 1996 .

[164]  Cecilia Faraloni,et al.  Outdoor H₂ production in a 50-L tubular photobioreactor by means of a sulfur-deprived culture of the microalga Chlamydomonas reinhardtii. , 2012, Journal of biotechnology.

[165]  Artiwan Shotipruk,et al.  Response surface methodology to supercritical carbon dioxide extraction of astaxanthin from Haematococcus pluvialis. , 2008, Bioresource technology.

[166]  Gregory Stephanopoulos,et al.  Synthetic biology and metabolic engineering. , 2012, ACS synthetic biology.

[167]  R. Lovitt,et al.  Placing microalgae on the biofuels priority list: a review of the technological challenges , 2010, Journal of The Royal Society Interface.

[168]  S. K. Nandi,et al.  Taxol content in the bark of Himalayan Yew in relation to tree age and sex. , 2002, Phytochemistry.

[169]  Elizabeth H. Harris,et al.  Further characterization of the respiratory deficient dum-1 mutation of Chlamydomonas reinhardtii and its use as a recipient for mitochondrial transformation , 2004, Molecular and General Genetics MGG.

[170]  Hanhua Hu,et al.  Microalgae as platforms for production of recombinant proteins and valuable compounds: progress and prospects , 2011, Journal of Industrial Microbiology & Biotechnology.

[171]  O. Bernard,et al.  Screening and selection of growth-promoting bacteria for Dunaliella cultures , 2013 .

[172]  D. Lewis,et al.  Disruption of microalgal cells for the extraction of lipids for biofuels: Processes and specific energy requirements , 2012 .

[173]  Patrik R. Jones,et al.  Ethylene Synthesis and Regulated Expression of Recombinant Protein in Synechocystis sp. PCC 6803 , 2012, PloS one.