Cascaded Denoising Convolutional Auto-Encoders for Automatic Recovery of Missing Time Series Data

This paper proposes a kind of supervised cascaded denoising convolutional auto-encoders (CDCAE), aiming to accurately recover the missing load data in electric power system. The one-dimensional load data are reshaped as two-dimensional image for data enhancement, which enables the convolutional neural network (CNN) to understand the semantics of load data. Numerical results in comparison with similar day filling (SDF) clearly validate the effectiveness of the proposed CDCAE in accuracy.

[1]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[2]  V. Miranda,et al.  Reconstructing Missing Data in State Estimation With Autoencoders , 2012, IEEE Transactions on Power Systems.

[3]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[4]  Muhammad Ibrahim,et al.  Machine learning driven smart electric power systems: Current trends and new perspectives , 2020 .

[5]  Sun Jie,et al.  Discussion on Testing the Mechanism of Missing Data , 2013 .

[6]  Linyao Zhang,et al.  A missing data complement method based on K-means clustering analysis , 2017, 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2).

[7]  VincentPascal,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010 .

[8]  Liang Gao,et al.  A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method , 2018, IEEE Transactions on Industrial Electronics.

[9]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[10]  Scott G. Ghiocel,et al.  Missing Data Recovery by Exploiting Low-Dimensionality in Power System Synchrophasor Measurements , 2016, IEEE Transactions on Power Systems.

[11]  Alexei A. Efros,et al.  Context Encoders: Feature Learning by Inpainting , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[13]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .