Stochastic microstructure characterization and reconstruction via supervised learning

[1]  M. Burge,et al.  Digital Image Processing , 2016, Texts in Computer Science.

[2]  B. Ripley,et al.  Recursive Partitioning and Regression Trees , 2015 .

[3]  Xingchen Liu,et al.  Random heterogeneous materials via texture synthesis , 2015 .

[4]  Marc Secanell,et al.  Stochastic reconstruction using multiple correlation functions with different-phase-neighbor-based pixel selection. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  V. Sundararaghavan Reconstruction of three-dimensional anisotropic microstructures from two-dimensional micrographs imaged on orthogonal planes , 2014, Integrating Materials and Manufacturing Innovation.

[6]  Yang Li,et al.  A Descriptor-Based Design Methodology for Developing Heterogeneous Microstructural Materials System , 2014 .

[7]  Zhi Xu,et al.  Stable-phase method for hierarchical annealing in the reconstruction of porous media images. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Yang Li,et al.  Stalking the Materials Genome: A Data‐Driven Approach to the Virtual Design of Nanostructured Polymers , 2013, Advanced functional materials.

[9]  Z Jiang,et al.  Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization , 2013, Journal of microscopy.

[10]  Hongyi Xu,et al.  Stochastic Reassembly Strategy for Managing Information Complexity in Heterogeneous Materials Analysis and Design , 2013 .

[11]  William B. March,et al.  Optimizing the computation of n-point correlations on large-scale astronomical data , 2012, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis.

[12]  David T. Fullwood,et al.  Microstructure Sensitive Design for Performance Optimization , 2012 .

[13]  Charles H. Ward Materials Genome Initiative for Global Competitiveness , 2012 .

[14]  N. Speybroeck Classification and regression trees , 2012, International Journal of Public Health.

[15]  A. Safekordi,et al.  A multiple-point statistics algorithm for 3D pore space reconstruction from 2D images , 2011 .

[16]  R. Piasecki,et al.  Speeding up of microstructure reconstruction: I. Application to labyrinth patterns , 2011, 1109.3819.

[17]  Yuksel C. Yabansu,et al.  Understanding and visualizing microstructure and microstructure variance as a stochastic process , 2011 .

[18]  Floriana D. Stoian,et al.  Prediction of particle size distribution effects on thermal conductivity of particulate composites , 2011 .

[19]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[20]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[21]  D. Fullwood,et al.  Optimized structure based representative volume element sets reflecting the ensemble-averaged 2-point statistics , 2010 .

[22]  F. Stillinger,et al.  A superior descriptor of random textures and its predictive capacity , 2009, Proceedings of the National Academy of Sciences.

[23]  T. Tang,et al.  A pixel selection rule based on the number of different‐phase neighbours for the simulated annealing reconstruction of sandstone microstructure , 2009, Journal of microscopy.

[24]  D. Fullwood,et al.  Gradient-based microstructure reconstructions from distributions using fast Fourier transforms , 2008 .

[25]  Xiao-hai He,et al.  A hybrid reconstruction method of sandstone from 2D section image , 2008, 2008 International Conference on Neural Networks and Signal Processing.

[26]  Philippe H. Geubelle,et al.  Reconstruction of periodic unit cells of multimodal random particulate composites using genetic algorithms , 2008 .

[27]  D. Fullwood,et al.  Microstructure reconstructions from 2-point statistics using phase-recovery algorithms , 2008 .

[28]  F. Stillinger,et al.  Modeling heterogeneous materials via two-point correlation functions. II. Algorithmic details and applications. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  F. Stillinger,et al.  Modeling heterogeneous materials via two-point correlation functions: basic principles. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Ahmed Al-Ostaz,et al.  Statistical model for characterizing random microstructure of inclusion–matrix composites , 2007 .

[31]  Antonio G. Chessa,et al.  A Markov Chain Model for Subsurface Characterization: Theory and Applications , 2006 .

[32]  S. Torquato Necessary Conditions on Realizable Two-Point Correlation Functions of Random Media† , 2006, cond-mat/0606577.

[33]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[34]  Mingjun Yuan,et al.  Microstructure and mechanical properties of microcellular injection molded polyamide-6 nanocomposites , 2005 .

[35]  I. Szapudi Introduction to Higher Order Spatial Statistics in Cosmology , 2005, astro-ph/0505391.

[36]  M. Blunt,et al.  Pore space reconstruction using multiple-point statistics , 2005 .

[37]  Nicholas Zabaras,et al.  Classification and reconstruction of three-dimensional microstructures using support vector machines , 2005 .

[38]  Asim Tewari,et al.  Nearest-neighbor distances between particles of finite size in three-dimensional uniform random microstructures , 2004 .

[39]  John W. Crawford,et al.  An Efficient Markov Chain Model for the Simulation of Heterogeneous Soil Structure , 2004 .

[40]  Mircea Grigoriu,et al.  Random field models for two-phase microstructures , 2003 .

[41]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[42]  J. Howard,et al.  Stochastic reconstruction, 3D characterization and network modeling of chalk , 2002 .

[43]  Alexei A. Efros,et al.  Image quilting for texture synthesis and transfer , 2001, SIGGRAPH.

[44]  S. Ahzi,et al.  Statistical continuum theory for large plastic deformation of polycrystalline materials , 2001 .

[45]  Marc Levoy,et al.  Fast texture synthesis using tree-structured vector quantization , 2000, SIGGRAPH.

[46]  G. B. Olson,et al.  Designing a New Material World , 2000, Science.

[47]  Alexei A. Efros,et al.  Texture synthesis by non-parametric sampling , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[48]  J. Quintanilla Microstructure and properties of random heterogeneous materials: A review of theoretical results , 1999 .

[49]  S. Torquato,et al.  Reconstructing random media. II. Three-dimensional media from two-dimensional cuts , 1998 .

[50]  P. Levitz,et al.  Off-lattice reconstruction of porous media: critical evaluation, geometrical confinement and molecular transport , 1998 .

[51]  G. B. Olson,et al.  Computational Design of Hierarchically Structured Materials , 1997 .

[52]  Rintoul,et al.  Reconstruction of the Structure of Dispersions , 1997, Journal of colloid and interface science.

[53]  G. Povirk,et al.  Incorporation of microstructural information into models of two-phase materials , 1995 .

[54]  R. Tibshirani,et al.  An Introduction to the Bootstrap , 1995 .

[55]  R R Edelman,et al.  Magnetic resonance imaging (1). , 1993, The New England journal of medicine.

[56]  I. F. Macdonald,et al.  Three‐dimensional reconstruction of porous media from serial section data , 1990 .

[57]  J. Quiblier A new three-dimensional modeling technique for studying porous media , 1984 .

[58]  Salvatore Torquato,et al.  Microstructure of two-phase random media.III: The n-point matrix probability functions for fully penetrable spheres , 1983 .

[59]  B. Efron,et al.  A Leisurely Look at the Bootstrap, the Jackknife, and , 1983 .

[60]  P. Corson Correlation functions for predicting properties of heterogeneous materials. I. Experimental measurement of spatial correlation functions in multiphase solids , 1974 .

[61]  P. Corson,et al.  Correlation functions for predicting properties of heterogeneous materials. II. Empirical construction of spatial correlation functions for two‐phase solids , 1974 .

[62]  P. Corson,et al.  Correlation functions for predicting properties of heterogeneous materials. IV. Effective thermal conductivity of two‐phase solids , 1974 .

[63]  A. M. Bueche,et al.  Scattering by an Inhomogeneous Solid , 1949 .

[64]  M. Kubát An Introduction to Machine Learning , 2017, Springer International Publishing.

[65]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[66]  Wei Chen,et al.  Computational microstructure characterization and reconstruction for stochastic multiscale material design , 2013, Comput. Aided Des..

[67]  Xin Sun,et al.  Comparison of reconstructed spatial microstructure images using different statistical descriptors , 2012 .

[68]  C. Heinzl,et al.  Advanced X-Ray Tomographic Methods for Quantitative Characterisation of Carbon Fibre Reinforced Polymers , 2012 .

[69]  D. Rypl,et al.  Three-Dimensional Reconstruction of Statistically Optimal Unit Cells of Multimodal Particulate Composites , 2010 .

[70]  P. Cloetens,et al.  X-ray micro-tomography an attractive characterisation technique in materials science , 2003 .

[71]  Salvatore Torquato,et al.  STATISTICAL DESCRIPTION OF MICROSTRUCTURES , 2002 .

[72]  Sebastien Strebelle,et al.  Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics , 2002 .

[73]  S. Torquato,et al.  Reconstructing random media , 1998 .

[74]  M. Sumita,et al.  Characterization of dispersion state of filler and polymer-filler interactions in rubber-carbon black composites , 1996 .

[75]  Yoshua,et al.  Pattern Recognition and Neural Networks , 1995 .

[76]  J. Hogg Magnetic resonance imaging. , 1994, Journal of the Royal Naval Medical Service.

[77]  The Astrophysical Journal, submitted Preprint typeset using L ATEX style emulateapj v. 10/09/06 MODELING THE GALAXY THREE-POINT CORRELATION FUNCTION , 2022 .