A little statistical mechanics for the graph theorist

In this survey, we give a friendly introduction from a graph theory perspective to the q-state Potts model. The Potts model is an important statistical mechanics tool for analyzing complex systems in which nearest neighbor interactions determine the aggregate behavior of the system. We present the surprising equivalence of the Potts model partition function and one of the most renowned graph invariants, the Tutte polynomial. This relationship has resulted in a remarkable synergy between the two fields of study. We highlight some of these interconnections, such as computational complexity results that have alternated between the two fields. The Potts model captures the effect of temperature on the system and plays an important role in the study of thermodynamic phase transitions. We discuss the equivalence of the chromatic polynomial and the zero-temperature antiferromagnetic partition function, and how this has led to the study of the complex zeros of these functions. We also briefly describe Monte Carlo simulations commonly used for Potts model analysis of complex systems. The Potts model has applications in areas as widely varied as magnetism, tumor migration, foam behaviors, and social demographics, and we provide a sampling of these that also demonstrates some variations of the Potts model. We conclude with some current areas of investigation that emphasize graph theoretic approaches.

[1]  B. Cipra An introduction to the Ising model , 1987 .

[2]  George D. Birkhoff,et al.  On the Number of Ways of Colouring a Map , 1930 .

[3]  G. Grimmett,et al.  Combinatorics, complexity, and chance : a tribute to Dominic Welsh , 2007 .

[4]  Paul D. Seymour,et al.  Approximating clique-width and branch-width , 2006, J. Comb. Theory, Ser. B.

[5]  Jesper Lykke Jacobsen,et al.  Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models , 2004 .

[6]  Alan D. Sokal Chromatic polynomials, Potts models and all that , 2000 .

[7]  F. Y. Wu,et al.  The random cluster model and a new integration identity , 2005 .

[8]  M. Fisher On the Dimer Solution of Planar Ising Models , 1966 .

[9]  Elliott H. Lleb Residual Entropy of Square Ice , 1967 .

[10]  Lorenzo Traldi,et al.  Parametrized Tutte Polynomials of Graphs and Matroids , 2006, Combinatorics, Probability and Computing.

[11]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[12]  H. Whitney A logical expansion in mathematics , 1932 .

[13]  Douglas R. Woodall Tutte polynomial expansions for 2-separable graphs , 2002, Discret. Math..

[14]  Steven D. Noble,et al.  Evaluating the Tutte Polynomial for Graphs of Bounded Tree-Width , 1998, Combinatorics, Probability and Computing.

[15]  Shu-Chiuan Chang,et al.  Exact Potts Model Partition Functions for Strips of the Square Lattice , 2001 .

[16]  Density of states, Potts zeros, and Fisher zeros of the Q-state Potts model for continuous Q. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  Hubert Saleur,et al.  Zeroes of chromatic polynomials: A new approach to Beraha conjecture using quantum groups , 1990 .

[18]  Y. Peres,et al.  Evolving sets, mixing and heat kernel bounds , 2003, math/0305349.

[19]  R. Baxter,et al.  Chromatic polynomials of large triangular lattices , 1987 .

[20]  David G. Wagner,et al.  Homogeneous multivariate polynomials with the half-plane property , 2004, Adv. Appl. Math..

[21]  Béla Bollobás,et al.  A Tutte Polynomial for Coloured Graphs , 1999, Combinatorics, Probability and Computing.

[22]  Alan D. Sokal,et al.  Chromatic Roots are Dense in the Whole Complex Plane , 2000, Combinatorics, Probability and Computing.

[23]  Alan D. Sokal,et al.  Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. III. Triangular-Lattice Chromatic Polynomial , 2002, cond-mat/0204587.

[24]  R. M. Damerell,et al.  Recursive families of graphs , 1972 .

[25]  Alan M. Frieze,et al.  Electronic Colloquium on Computational Complexity Polynomial Time Randomised Approximation Schemes for Tutte-grr Othendieck Invariants: the Dense Case , 2022 .

[26]  Halina Bielak Roots of chromatic polynomials , 2001, Discret. Math..

[27]  Geoffrey Grimmett The Random-Cluster Model , 2002, math/0205237.

[28]  Complex-temperature singularities in Potts models on the square lattice. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[30]  Aldo Procacci,et al.  Potts Model on Infinite Graphs and the Limit of Chromatic Polynomials , 2002 .

[31]  Alan D. Sokal,et al.  Bounds on the Complex Zeros of (Di)Chromatic Polynomials and Potts-Model Partition Functions , 1999, Combinatorics, Probability and Computing.

[32]  David G. Wagner,et al.  On the Chromatic Roots of Generalized Theta Graphs , 2001, J. Comb. Theory, Ser. B.

[33]  Raymond J. Seeger,et al.  Lectures in Theoretical Physics , 1962 .

[34]  Aldo Procacci,et al.  Regions Without Complex Zeros for Chromatic Polynomials on Graphs with Bounded Degree , 2008, Comb. Probab. Comput..

[35]  Shan-Ho Tsai,et al.  Chromatic polynomials for families of strip graphs and their asymptotic limits , 1998 .

[36]  Alan D. Sokal The multivariate Tutte polynomial (alias Potts model) for graphs and matroids , 2005, Surveys in Combinatorics.

[37]  J. Maillard,et al.  Zeros of the partition function for the triangular lattice three-state Potts model , 1986 .

[38]  D. Welsh,et al.  The Potts model and the Tutte polynomial , 2000 .

[39]  H. Stanley,et al.  Introduction to Phase Transitions and Critical Phenomena , 1972 .

[40]  Carsten Thomassen Chromatic Roots and Hamiltonian Paths , 2000, J. Comb. Theory, Ser. B.

[41]  W. T. Tutte,et al.  A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.

[42]  L. Onsager Crystal statistics. I. A two-dimensional model with an order-disorder transition , 1944 .

[43]  A. Sokal,et al.  Critical behavior of the Chayes-Machta-Swendsen-Wang dynamics. , 2007, Physical review letters.

[44]  K. Fernow New York , 1896, American Potato Journal.

[45]  Robert Shrock Chromatic polynomials and their zeros and asymptotic limits for families of graphs , 2001, Discret. Math..

[46]  Jesper Lykke Jacobsen,et al.  Phase diagram of the chromatic polynomial on a torus , 2007 .

[47]  Norman Biggs,et al.  Equimodular curves , 2002, Discret. Math..

[48]  Alan D. Sokal,et al.  Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models. I. General Theory and Square-Lattice Chromatic Polynomial , 2001 .

[49]  C. Itzykson,et al.  Conformal Invariance , 1987 .

[50]  Paul Martin,et al.  POTTS MODELS AND RELATED PROBLEMS IN STATISTICAL MECHANICS , 1991 .

[51]  Fabio Martinelli,et al.  Fast mixing for independent sets, colorings, and other models on trees , 2004, SODA '04.

[52]  Zeroes of the Jones polynomial , 2001, cond-mat/0105013.

[53]  D. J. A. Welsha,et al.  The Potts model and the Tutte polynomial , 2000 .

[54]  Carsten Thomassen,et al.  The Zero-Free Intervals for Chromatic Polynomials of Graphs , 1997, Combinatorics, Probability and Computing.

[55]  Tom Brylawski,et al.  Matroid Applications: The Tutte Polynomial and Its Applications , 1992 .

[56]  R. Baxter,et al.  Equivalence of the Potts model or Whitney polynomial with an ice-type model , 1976 .

[57]  W. T. Tutte Graph Theory , 1984 .

[58]  F. Y. Wu Potts model of magnetism (invited) , 1984 .

[59]  Shan-Ho Tsai,et al.  Ground-state entropy of Potts antiferromagnets: Bounds, series, and Monte Carlo measurements , 1997 .

[60]  J. Ashkin,et al.  Two Problems in the Statistical Mechanics of Crystals. I. The Propagation of Order in Crystal Lattices. I. The Statistics of Two-Dimensional Lattices with Four Components. , 1943 .

[61]  K. Koh,et al.  Chromatic polynomials and chro-maticity of graphs , 2005 .

[62]  Hassler Whitney,et al.  The Coloring of Graphs , 1932 .

[63]  Dirk L. Vertigan,et al.  The Computational Complexity of Tutte Invariants for Planar Graphs , 2005, SIAM J. Comput..

[64]  Criel Merino,et al.  Graph Polynomials and Their Applications II: Interrelations and Interpretations , 2008, Structural Analysis of Complex Networks.

[65]  Criel Merino,et al.  Graph Polynomials and Their Applications I: The Tutte Polynomial , 2008, Structural Analysis of Complex Networks.

[66]  G. Birkhoff A Determinant Formula for the Number of Ways of Coloring a Map , 1912 .

[67]  Marc Noy,et al.  Lattice path matroids: enumerative aspects and Tutte polynomials , 2003, J. Comb. Theory, Ser. A.

[68]  Jian-Sheng Wang,et al.  Sweeny and Gliozzi dynamics for simulations of Potts models in the Fortuin-Kasteleyn representation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[69]  S. Alexander Lattice gas transition of He on Grafoil. A continuous transition with cubic terms , 1975 .

[70]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[71]  Shu-Chiuan Chang,et al.  Zeros of Jones polynomials for families of knots and links , 2001 .

[72]  Mark Jerrum APPROXIMATING THE TUTTE POLYNOMIAL , 2007 .

[73]  C. Schulze Potts-Like Model For Ghetto Formation In Multi-Cultural Societies , 2004, cond-mat/0409679.

[74]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[75]  Joseph Kahane,et al.  Is the four-color conjecture almost false? , 1979, J. Comb. Theory B.

[76]  H. Stanley,et al.  Phase Transitions and Critical Phenomena , 2008 .

[77]  Shan-Ho Tsai,et al.  Ground-state degeneracy of Potts antiferromagnets: cases with noncompact W boundaries having multiple points at , 1998 .

[78]  Marc Noy,et al.  Computing the Tutte Polynomial on Graphs of Bounded Clique-Width , 2005, WG.

[79]  Lorenzo Traldi,et al.  On the colored Tutte polynomial of a graph of bounded treewidth , 2006, Discret. Appl. Math..

[80]  Robert Shrock T=0 partition functions for Potts antiferromagnets on Möbius strips and effects of graph topology , 1999 .

[81]  F. Y. Wu Potts model and graph theory , 1988 .

[82]  Norman Biggs,et al.  A Matrix Method for Chromatic Polynomials , 2001, J. Comb. Theory, Ser. B.

[83]  Shan-Ho Tsai,et al.  Ground state entropy of Potts antiferromagnets on homeomorphic families of strip graphs , 1998, cond-mat/9807105.

[84]  A. Sokal,et al.  Absence of phase transition for antiferromagnetic Potts models via the Dobrushin uniqueness theorem , 1996, cond-mat/9603068.

[85]  Thomas C. Schelling,et al.  Dynamic models of segregation , 1971 .

[86]  D. Welsh,et al.  On the computational complexity of the Jones and Tutte polynomials , 1990, Mathematical Proceedings of the Cambridge Philosophical Society.

[87]  Shu-Chiuan Chang,et al.  Exact Potts model partition function on strips of the triangular lattice , 2000 .

[88]  Raymond Balbes On Counting Sperner Families , 1979, J. Comb. Theory, Ser. A.

[89]  R. Baxter Potts model at the critical temperature , 1973 .

[90]  Norman Biggs,et al.  T = 0 partition functions for Potts antiferromagnets on square lattice strips with (twisted) periodic boundary conditions , 1999, cond-mat/0001407.

[91]  Shu-Chiuan Chang,et al.  Exact Potts model partition functions on wider arbitrary-length strips of the square lattice , 2001 .

[92]  Gordon F. Royle Graphs with Chromatic Roots in the Interval (1, 2) , 2007, Electron. J. Comb..

[93]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[94]  Johann A. Makowsky,et al.  Colored Tutte polynomials and Kaufman brackets for graphs of bounded tree width , 2001, SODA '01.

[95]  Feng Ming Dong The largest non-integer real zero of chromatic polynomials of graphs with fixed order , 2004, Discret. Math..

[96]  R. Read An introduction to chromatic polynomials , 1968 .

[97]  Norman Biggs,et al.  Specht modules and chromatic polynomials , 2004, J. Comb. Theory B.

[98]  Alan M. Frieze,et al.  Polynomial time randomised approximation schemes for the Tutte polynomial of dense graphs , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[99]  Thomas Zaslavsky,et al.  Strong Tutte functions of matroids and graphs , 1992 .

[100]  J. Sherratt,et al.  Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. , 2002, Journal of theoretical biology.

[101]  F. M. Dong CORR 2001-24 The Largest non-integer Zero of Chromatic Polynomials of Graphs with Fixed Order , 2001 .

[102]  D. Welsh The tutte polynomial , 1999 .

[103]  M. Nightingale,et al.  Critical behaviour of the two-dimensional Potts model with a continuous number of states; A finite size scaling analysis , 1982 .

[104]  Shan-Ho Tsai,et al.  Asymptotic limits and zeros of chromatic polynomials and ground-state entropy of Potts antiferromagnets , 1997 .

[105]  B. A. Reed,et al.  Algorithmic Aspects of Tree Width , 2003 .

[106]  Alan D. Sokal A Personal List of Unsolved Problems Concerning Lattice Gases and Antiferromagnetic Potts Models , 2000 .

[107]  K. Binder,et al.  A Guide to Monte Carlo Simulations in Statistical Physics , 2000 .

[108]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[109]  Paul D. Seymour,et al.  Graph minors. III. Planar tree-width , 1984, J. Comb. Theory B.

[110]  D. Welsh Complexity: Knots, Colourings and Counting: Link polynomials and the Tait conjectures , 1993 .

[111]  Shu-Chiuan Chang,et al.  Exact Potts model partition functions on strips of the honeycomb lattice , 2000, cond-mat/0008477.

[113]  F Y Wu New critical frontiers for the potts and percolation models. , 2006, Physical review letters.

[114]  J. Salas,et al.  Exact Potts Model Partition Functions for Strips of the Triangular Lattice , 2022 .

[115]  Dominic Welsh,et al.  The Tutte polynomial , 1999, Random Struct. Algorithms.

[116]  Marc Noy,et al.  Computing the Tutte Polynomial on Graphs of Bounded Clique-Width , 2006, SIAM J. Discret. Math..

[117]  Shu-Chiuan Chang,et al.  Ground state entropy of the Potts antiferromagnet on strips of the square lattice , 2001 .

[118]  Shan-Ho Tsai,et al.  Families of Graphs with W_r({G},q) Functions That Are Nonanalytic at 1/q=0 , 1997 .

[119]  Michael E. Fisher,et al.  The renormalization group in the theory of critical behavior , 1974 .

[120]  S. Beraha,et al.  Limits of chromatic zeros of some families of maps , 1980, J. Comb. Theory B.

[121]  Giovanni Gallavotti,et al.  Equilibrium Statistical Mechanics , 2005, cond-mat/0504790.

[122]  J. Richard,et al.  Complex-temperature phase diagram of Potts and RSOS models , 2005, cond-mat/0511059.

[123]  William T. Tutte A Ring in Graph Theory , 1947 .

[124]  Graham R. Brightwell,et al.  Graph Homomorphisms and Phase Transitions , 1999, J. Comb. Theory, Ser. B.

[125]  Gek L. Chia,et al.  A bibliography on chromatic polynomials , 1997, Discret. Math..

[126]  G. Royle Planar Triangulations with Real Chromatic Roots Arbitrarily Close to 4 , 2005, math/0511304.

[127]  Lorenzo Traldi,et al.  A dichromatic polynomial for weighted graphs and link polynomials , 1989 .

[128]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .

[129]  Feng Ming Dong,et al.  On upper bounds for real roots of chromatic polynomials , 2004, Discret. Math..

[130]  G. E. Farr,et al.  On the Ashkin–Teller Model and Tutte–Whitney Functions , 2007, Combinatorics, Probability and Computing.

[131]  Johann A. Makowsky,et al.  Computing Graph Polynomials on Graphs of Bounded Clique-Width , 2006, WG.

[132]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[133]  M. Jerrum Two-dimensional monomer-dimer systems are computationally intractable , 1987 .

[134]  M. Flohr,et al.  Conformal Field Theory , 2006 .

[136]  Robert Shrock Exact Potts Model Partition Functions on Ladder Graphs , 2000 .

[137]  Bill Jackson,et al.  A Zero-Free Interval for Chromatic Polynomials of Graphs , 1993, Combinatorics, Probability and Computing.

[138]  Paul D. Seymour,et al.  Graph minors. I. Excluding a forest , 1983, J. Comb. Theory, Ser. B.

[139]  Ronald C. Read Chain polynomials of graphs , 2003, Discret. Math..

[140]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[141]  Douglas R. Woodall,et al.  A zero-free interval for chromatic polynomials , 1992, Discret. Math..

[142]  H. Meyer-Ortmanns IMMIGRATION, INTEGRATION AND GHETTO FORMATION , 2002, cond-mat/0209242.

[143]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[144]  R Shrock,et al.  Ground-state degeneracy of Potts antiferromagnets on two-dimensional lattices: approach using infinite cyclic strip graphs. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[145]  E. Domany,et al.  Classification of continuous order-disorder transitions in adsorbed monolayers , 1978 .

[146]  Chen,et al.  Partition function zeros of the square lattice Potts model. , 1996, Physical review letters.

[147]  Gordon F. Royle,et al.  The Brown-Colbourn conjecture on zeros of reliability polynomials is false , 2004, J. Comb. Theory, Ser. B.

[148]  B. Bollobás Surveys in Combinatorics , 1979 .

[149]  G. E. Farr,et al.  The Complexity of Counting Colourings of Subgraphs of the Grid , 2006, Combinatorics, Probability and Computing.

[150]  Lorenzo Traldi,et al.  Chain polynomials and Tutte polynomials , 2002, Discret. Math..

[151]  N. Biggs Algebraic Graph Theory , 1974 .

[152]  J. Nagle,et al.  A new subgraph expansion for obtaining coloring polynomials for graphs , 1971 .

[153]  B. Mohar,et al.  Graph Minors , 2009 .

[154]  Mikhail H. Klin,et al.  Algebraic methods for chromatic polynomials , 2004, Eur. J. Comb..

[155]  H. Saleur,et al.  The antiferromagnetic Potts model in two dimensions: Berker-Kadanoff phase, antiferromagnetic transition, and the role of Beraha numbers , 1991 .

[156]  Frank C. Andrews,et al.  Equilibrium Statistical Mechanics , 1963 .

[157]  N. Biggs Chromatic Polynomials for Twisted Bracelets , 2002 .

[158]  W. T. Tutte,et al.  Graph-polynomials , 2004, Adv. Appl. Math..

[159]  Graham Farr TUTTE-WHITNEY POLYNOMIALS: SOME HISTORY AND GENERALIZATIONS , 2007 .

[160]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[161]  James A Glazier,et al.  Viscous instabilities in flowing foams: a Cellular Potts Model approach. , 2006, Journal of statistical mechanics.

[162]  Bill Jackson,et al.  Zeros of chromatic and flow polynomials of graphs , 2002, math/0205047.

[163]  F. Y. Wu The Potts model , 1982 .

[164]  Christian Borgs,et al.  Absence of Zeros for the Chromatic Polynomial on Bounded Degree Graphs , 2006, Combinatorics, Probability and Computing.

[165]  W. T. Tutte,et al.  On dichromatic polynomials , 1967 .

[166]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation , 1952 .

[167]  D. Chandler,et al.  Introduction To Modern Statistical Mechanics , 1987 .

[168]  L. Beineke,et al.  Selected Topics in Graph Theory 2 , 1985 .

[169]  Dominic J. A. Welsh,et al.  The Computational Complexity of the Tutte Plane: the Bipartite Case , 1992, Combinatorics, Probability and Computing.

[170]  R. Baxter,et al.  q colourings of the triangular lattice , 1986 .

[171]  D. Kim,et al.  The limit of chromatic polynomials , 1979, J. Comb. Theory, Ser. B.

[172]  Shu-Chiuan Chang,et al.  Structural properties of Potts model partition functions and chromatic polynomials for lattice strips , 2001 .

[173]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[174]  Laboratoire de Physique Théorique Transfer Matrices and Partition-Function Zeros for Antiferromagnetic Potts Models IV . Chromatic polynomial with cyclic boundary conditions , 2007 .

[175]  G. Sposito,et al.  Graph theory and theoretical physics , 1969 .