Gamma-convergence of gradient flows on Hilbert and metric spaces and applications

We are concerned with -convergence of gradient ows, which is a notion meant to ensure that if a family of energy functionals depending of a parameter -converges, then the solutions to the associated gradient ows converge as well. In this paper we present both a review of the abstract \theory" and of the applications it has had, and a generalization of the scheme to metric spaces which has not appeared elsewhere. We also mention open problems and perspectives. -convergence was introduced by De Giorgi in the 70’s. It provides a convenient notion of convergence of a family of energy functionalsE" to a limiting functionalF , which ensures in particular that minimizers ofE" converge to minimizers ofF . In [DeG1], De Giorgi raised the question of knowing whether there was any general relation between solutions of the

[1]  R. Jerrard Vortex dynamics for the Ginzburg-Landau wave equation , 1999 .

[2]  F. Béthuel,et al.  Dynamics of Multiple Degree Ginzburg-Landau Vortices , 2006 .

[3]  Tom Ilmanen,et al.  Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature , 1993 .

[4]  S. Serfaty,et al.  Gamma‐convergence of gradient flows with applications to Ginzburg‐Landau , 2004 .

[5]  Mario Tosques,et al.  Curves of maximal slope and parabolic variational inequalities on non-convex constraints , 1989 .

[6]  A relation between Г-convergence of functionals and their associated gradient flows , 1999 .

[7]  L. Ambrosio,et al.  Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices , 2011 .

[8]  H. Brezis,et al.  Ginzburg-Landau Vortices , 1994 .

[9]  C. Villani The founding fathers of optimal transport , 2009 .

[10]  C. Villani Optimal Transport: Old and New , 2008 .

[11]  Xinfu Chen,et al.  Generation and propagation of interfaces for reaction-diffusion equations , 1992 .

[12]  Matthias Kurzke,et al.  The gradient flow motion of boundary vortices , 2007 .

[13]  Robert L. Pego,et al.  Front migration in the nonlinear Cahn-Hilliard equation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  Maria G. Reznikoff,et al.  Higher Multiplicity in the One-Dimensional Allen-Cahn Action Functional , 2006 .

[15]  E Weinan,et al.  Minimum action method for the study of rare events , 2004 .

[16]  Fanghua Lin,et al.  Some Dynamical Properties of Ginzburg-Landau Vortices , 1996 .

[17]  Christoph Ortner,et al.  Gradient Flows as a Selection Procedure for Equilibria of Nonconvex Energies , 2006, SIAM J. Math. Anal..

[18]  Weiqing Ren,et al.  Adaptive minimum action method for the study of rare events. , 2008, The Journal of chemical physics.

[19]  F. Béthuel,et al.  Collisions and phase-vortex interactions in dissipative Ginzburg-Landau dynamics , 2005 .

[20]  Sylvia Serfaty,et al.  Limiting vorticities for the Ginzburg-Landau equations , 2003 .

[21]  Jacob Rubinstein,et al.  A mean-field model of superconducting vortices , 1996, European Journal of Applied Mathematics.

[22]  M. Schatzman,et al.  Development of interfaces in ℝN , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[23]  N. Le A Gamma-convergence approach to the Cahn–Hilliard equation , 2008 .

[24]  Peter W. Bates,et al.  Convergence of the Cahn-Hilliard equation to the Hele-Shaw model , 1994 .

[25]  Sylvia Serfaty,et al.  Vortices in the Magnetic Ginzburg-Landau Model , 2006 .

[26]  A. Mielke Weak-convergence methods for Hamiltonian multiscale problems , 2007 .

[27]  Robert V. Kohn,et al.  Sharp-interface limit of the Allen-Cahn action functional in one space dimension , 2006 .

[28]  S. Serfaty Vortex collisions and energy-dissipation rates in the Ginzburg–Landau heat flow. Part I: Study of the perturbed Ginzburg–Landau equation , 2007 .

[29]  Ulisse Stefanelli,et al.  Γ-limits and relaxations for rate-independent evolutionary problems , 2008 .

[30]  Sylvia Serfaty,et al.  A rigorous derivation of a free-boundary problem arising in superconductivity , 2000 .

[31]  F. Béthuel,et al.  Convergence of the parabolic Ginzburg–Landau equation to motion by mean curvature , 2003 .

[32]  Enrico Valdinoci,et al.  Closed curves of prescribed curvature and a pinning effect , 2011, Networks Heterog. Media.

[33]  Halil Mete Soner,et al.  Dynamics of Ginzburg‐Landau Vortices , 1998 .

[34]  Two Variational Techniques for the Approximation of Curves of Maximal Slope , 2005 .

[35]  Sylvia Serfaty,et al.  A product-estimate for Ginzburg–Landau and corollaries , 2004 .

[36]  Robert V. Kohn,et al.  Action minimization and sharp‐interface limits for the stochastic Allen‐Cahn equation , 2007 .

[37]  Morteza Zadimoghaddam,et al.  Minimizing movement , 2007, SODA '07.

[38]  Norifumi Sato,et al.  A simple proof of convergence of the Allen-Cahn equation to Brakke's motion by mean curvature , 2008 .

[39]  F. Béthuel,et al.  Quantization and Motion Law for Ginzburg–Landau Vortices , 2007 .

[40]  P. Sternberg,et al.  Critical points via Gamma-convergence: general theory and applications , 2009 .

[41]  Marco Degiovanni,et al.  Evolution equations with lack of convexity , 1985 .

[42]  L. Ambrosio,et al.  A gradient flow approach to an evolution problem arising in superconductivity , 2008 .

[43]  P. Souganidis,et al.  Phase Transitions and Generalized Motion by Mean Curvature , 1992 .

[44]  Yoshihiro Tonegawa,et al.  Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory , 2000 .

[45]  S. Serfaty Vortex collisions and energy-dissipation rates in the Ginzburg-Landau heat flow Part II: The dynamics , 2007 .

[46]  S. Serfaty Stability in 2D Ginzburg-Landau passes to the limit , 2005 .

[47]  Matthias Röger,et al.  On a Modified Conjecture of De Giorgi , 2006 .

[48]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[49]  Nam Q. Le,et al.  On the Convergence of the Ohta-Kawasaki Equation to Motion by Nonlocal Mullins-Sekerka Law , 2009, SIAM J. Math. Anal..

[50]  Luca Mugnai,et al.  The Allen-Cahn action functional in higher dimensions , 2007, 0704.1954.

[51]  L. Bronsard,et al.  Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics , 1991 .