Gamma-convergence of gradient flows on Hilbert and metric spaces and applications
暂无分享,去创建一个
[1] R. Jerrard. Vortex dynamics for the Ginzburg-Landau wave equation , 1999 .
[2] F. Béthuel,et al. Dynamics of Multiple Degree Ginzburg-Landau Vortices , 2006 .
[3] Tom Ilmanen,et al. Convergence of the Allen-Cahn equation to Brakke's motion by mean curvature , 1993 .
[4] S. Serfaty,et al. Gamma‐convergence of gradient flows with applications to Ginzburg‐Landau , 2004 .
[5] Mario Tosques,et al. Curves of maximal slope and parabolic variational inequalities on non-convex constraints , 1989 .
[6] A relation between Г-convergence of functionals and their associated gradient flows , 1999 .
[7] L. Ambrosio,et al. Gradient flow of the Chapman–Rubinstein–Schatzman model for signed vortices , 2011 .
[8] H. Brezis,et al. Ginzburg-Landau Vortices , 1994 .
[9] C. Villani. The founding fathers of optimal transport , 2009 .
[10] C. Villani. Optimal Transport: Old and New , 2008 .
[11] Xinfu Chen,et al. Generation and propagation of interfaces for reaction-diffusion equations , 1992 .
[12] Matthias Kurzke,et al. The gradient flow motion of boundary vortices , 2007 .
[13] Robert L. Pego,et al. Front migration in the nonlinear Cahn-Hilliard equation , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[14] Maria G. Reznikoff,et al. Higher Multiplicity in the One-Dimensional Allen-Cahn Action Functional , 2006 .
[15] E Weinan,et al. Minimum action method for the study of rare events , 2004 .
[16] Fanghua Lin,et al. Some Dynamical Properties of Ginzburg-Landau Vortices , 1996 .
[17] Christoph Ortner,et al. Gradient Flows as a Selection Procedure for Equilibria of Nonconvex Energies , 2006, SIAM J. Math. Anal..
[18] Weiqing Ren,et al. Adaptive minimum action method for the study of rare events. , 2008, The Journal of chemical physics.
[19] F. Béthuel,et al. Collisions and phase-vortex interactions in dissipative Ginzburg-Landau dynamics , 2005 .
[20] Sylvia Serfaty,et al. Limiting vorticities for the Ginzburg-Landau equations , 2003 .
[21] Jacob Rubinstein,et al. A mean-field model of superconducting vortices , 1996, European Journal of Applied Mathematics.
[22] M. Schatzman,et al. Development of interfaces in ℝN , 1990, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[23] N. Le. A Gamma-convergence approach to the Cahn–Hilliard equation , 2008 .
[24] Peter W. Bates,et al. Convergence of the Cahn-Hilliard equation to the Hele-Shaw model , 1994 .
[25] Sylvia Serfaty,et al. Vortices in the Magnetic Ginzburg-Landau Model , 2006 .
[26] A. Mielke. Weak-convergence methods for Hamiltonian multiscale problems , 2007 .
[27] Robert V. Kohn,et al. Sharp-interface limit of the Allen-Cahn action functional in one space dimension , 2006 .
[28] S. Serfaty. Vortex collisions and energy-dissipation rates in the Ginzburg–Landau heat flow. Part I: Study of the perturbed Ginzburg–Landau equation , 2007 .
[29] Ulisse Stefanelli,et al. Γ-limits and relaxations for rate-independent evolutionary problems , 2008 .
[30] Sylvia Serfaty,et al. A rigorous derivation of a free-boundary problem arising in superconductivity , 2000 .
[31] F. Béthuel,et al. Convergence of the parabolic Ginzburg–Landau equation to motion by mean curvature , 2003 .
[32] Enrico Valdinoci,et al. Closed curves of prescribed curvature and a pinning effect , 2011, Networks Heterog. Media.
[33] Halil Mete Soner,et al. Dynamics of Ginzburg‐Landau Vortices , 1998 .
[34] Two Variational Techniques for the Approximation of Curves of Maximal Slope , 2005 .
[35] Sylvia Serfaty,et al. A product-estimate for Ginzburg–Landau and corollaries , 2004 .
[36] Robert V. Kohn,et al. Action minimization and sharp‐interface limits for the stochastic Allen‐Cahn equation , 2007 .
[37] Morteza Zadimoghaddam,et al. Minimizing movement , 2007, SODA '07.
[38] Norifumi Sato,et al. A simple proof of convergence of the Allen-Cahn equation to Brakke's motion by mean curvature , 2008 .
[39] F. Béthuel,et al. Quantization and Motion Law for Ginzburg–Landau Vortices , 2007 .
[40] P. Sternberg,et al. Critical points via Gamma-convergence: general theory and applications , 2009 .
[41] Marco Degiovanni,et al. Evolution equations with lack of convexity , 1985 .
[42] L. Ambrosio,et al. A gradient flow approach to an evolution problem arising in superconductivity , 2008 .
[43] P. Souganidis,et al. Phase Transitions and Generalized Motion by Mean Curvature , 1992 .
[44] Yoshihiro Tonegawa,et al. Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory , 2000 .
[45] S. Serfaty. Vortex collisions and energy-dissipation rates in the Ginzburg-Landau heat flow Part II: The dynamics , 2007 .
[46] S. Serfaty. Stability in 2D Ginzburg-Landau passes to the limit , 2005 .
[47] Matthias Röger,et al. On a Modified Conjecture of De Giorgi , 2006 .
[48] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[49] Nam Q. Le,et al. On the Convergence of the Ohta-Kawasaki Equation to Motion by Nonlocal Mullins-Sekerka Law , 2009, SIAM J. Math. Anal..
[50] Luca Mugnai,et al. The Allen-Cahn action functional in higher dimensions , 2007, 0704.1954.
[51] L. Bronsard,et al. Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics , 1991 .