Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle?

All mammalian retinae contain rod photoreceptors for low-light vision and cone photoreceptors for daylight and color vision. Most nonprimate mammals have dichromatic color vision based on two cone types with spectrally different visual pigments: a short-wavelength-sensitive (S-)cone and a long-wavelength-sensitive (L-)cone. Superimposed on this basic similarity, there are remarkable differences between species. This article reviews some striking examples. The density ratio of cones to rods ranges from 1:200 in the most nocturnal to 20:1 in a few diurnal species. In some species, the proportion of the spectral cone types and their distribution across the retina deviate from the pattern found in most mammals, including a complete absence of S-cones. Depending on species, the spectral sensitivity of the L-cone pigment may peak in the green, yellow, or orange, and that of the S-cone pigment in the blue, violet, or near-ultraviolet. While exclusive expression of one pigment per cone is the rule, some species feature coexpression of the L- and S-pigment in a significant proportion of their cones. It is widely assumed that all these variations represent adaptations to specific visual needs associated with particular habitats and lifestyles. However, in many cases we have not yet identified the adaptive value of a given photoreceptor arrangement. Comparative anatomy is a fruitful approach to explore the range of possible arrangements within the blueprint of the mammalian retina and to identify species with particularly interesting or puzzling patterns that deserve further scrutiny with physiological and behavioral assays.

[1]  Francisco Bozinovic,et al.  Eye and vision in the subterranean rodent cururo (Spalacopus cyanus, octodontidae) , 2005, The Journal of comparative neurology.

[2]  L. Peichl,et al.  Retinal Cone Photoreceptors in Microchiropteran Bats , 2005 .

[3]  D. Hunt,et al.  The Cone Visual Pigments of Two Australian Marsupials, the Honey Possum and the Fat–Tailed Dunnart, With the Potential For Trichromacy , 2005 .

[4]  L. Peichl,et al.  Retinal Cone Types in Brown Bears and the Polar Bear Indicate Dichromatic Color Vision , 2005 .

[5]  H. Wässle,et al.  The Primordial, Blue-Cone Color System of the Mouse Retina , 2005, The Journal of Neuroscience.

[6]  D. Hunt,et al.  Cone topography and spectral sensitivity in two potentially trichromatic marsupials, the quokka (Setonix brachyurus) and quenda (Isoodon obesulus) , 2005, Proceedings of the Royal Society B: Biological Sciences.

[7]  Á. Szél,et al.  Photopigment coexpression in mammals: comparative and developmental aspects. , 2005, Histology and histopathology.

[8]  G. H. Jacobs,et al.  Photoreceptors and photopigments in a subterranean rodent, the pocket gopher (Thomomys bottae) , 2005, Journal of Comparative Physiology A.

[9]  Heinz Wässle,et al.  Parallel processing in the mammalian retina , 2004, Nature Reviews Neuroscience.

[10]  G. H. Jacobs,et al.  Evolution of vertebrate colour vision , 2004, Clinical & experimental optometry.

[11]  J. Bowmaker,et al.  A novel amino acid substitution is responsible for spectral tuning in a rodent violet-sensitive visual pigment. , 2004, Biochemistry.

[12]  G. H. Jacobs,et al.  Influence of cone pigment coexpression on spectral sensitivity and color vision in the mouse , 2004, Vision Research.

[13]  J. Graves,et al.  Cone visual pigments of the Australian marsupials, the stripe-faced and fat-tailed dunnarts: Sequence and inferred spectral properties , 2004, Visual Neuroscience.

[14]  Pavel Nemec,et al.  Unusual cone and rod properties in subterranean African mole‐rats (Rodentia, Bathyergidae) , 2004, The European journal of neuroscience.

[15]  S. Mills,et al.  Identification of retinal neurons in a regressive rodent eye (the naked mole-rat) , 2004, Visual Neuroscience.

[16]  Jeffrey P. Mower,et al.  Molecular evolution of bat color vision genes. , 2003, Molecular biology and evolution.

[17]  G. H. Jacobs,et al.  Cone photopigments in nocturnal and diurnal procyonids , 1992, Journal of Comparative Physiology A.

[18]  G. H. Jacobs,et al.  Spectral sensitivity of ground squirrel cones measured with ERG flicker photometry , 1985, Journal of Comparative Physiology A.

[19]  York Winter,et al.  Ultraviolet vision in a bat , 2003, Nature.

[20]  G. H. Jacobs,et al.  Topography of Photoreceptors and Retinal Ganglion Cells in the Spotted Hyena (Crocuta crocuta) , 2003, Brain, Behavior and Evolution.

[21]  J. Eklöf,et al.  Vision complements echolocation in an aerial-hawking bat , 2003, Naturwissenschaften.

[22]  D. Dacey,et al.  Colour coding in the primate retina: diverse cell types and cone-specific circuitry , 2003, Current Opinion in Neurobiology.

[23]  L. Peichl,et al.  Retinal spectral sensitivity, fur coloration, and urine reflectance in the genus octodon (rodentia): implications for visual ecology. , 2003, Investigative ophthalmology & visual science.

[24]  L. Beazley,et al.  Topographies of retinal cone photoreceptors in two Australian marsupials , 2003, Visual Neuroscience.

[25]  S. Deeb,et al.  The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution. , 2003, Molecular biology and evolution.

[26]  D. H. Levenson,et al.  Genetic evidence for the ancestral loss of short-wavelength-sensitive cone pigments in mysticete and odontocete cetaceans , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[27]  G. H. Jacobs,et al.  Visual adaptations in a diurnal rodent, Octodon degus , 2003, Journal of Comparative Physiology A.

[28]  L. Peichl,et al.  Colour vision in aquatic mammals—facts and open questions , 2003 .

[29]  P. Robinson,et al.  An Investigation of the Color Vision of Marine Mammals , 2002 .

[30]  E. Nevo,et al.  Adaptive loss of ultraviolet‐sensitive/violet‐sensitive (UVS/VS) cone opsin in the blind mole rat (Spalax ehrenbergi) , 2002, The European journal of neuroscience.

[31]  J. Bowmaker,et al.  The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments. , 2002, The Biochemical journal.

[32]  P. Gouras,et al.  Co-expression of murine opsins facilitates identifying the site of cone adaptation , 2002, Visual Neuroscience.

[33]  E. Nevo,et al.  The retina of Spalax ehrenbergi: novel histologic features supportive of a modified photosensory role. , 2002, Investigative ophthalmology & visual science.

[34]  J. Bowmaker,et al.  Visual pigment coexpression in Guinea pig cones: a microspectrophotometric study. , 2002, Investigative ophthalmology & visual science.

[35]  L. Beazley,et al.  Trichromacy in Australian Marsupials , 2002, Current Biology.

[36]  A. Hendrickson,et al.  Distribution and density of medium- and short-wavelength selective cones in the domestic pig retina. , 2002, Experimental eye research.

[37]  J. Eklöf,et al.  Precedence of visual cues in the emballonurid bat Balantiopteryx plicata , 2002 .

[38]  S. Poopalasundaram,et al.  Vision in the ultraviolet , 2001, Cellular and Molecular Life Sciences CMLS.

[39]  Á. Szél,et al.  Short and mid‐wavelength cone distribution in a nocturnal Strepsirrhine primate (Microcebus murinus) , 2001, The Journal of comparative neurology.

[40]  J. Neitz,et al.  The uncommon retina of the common house mouse , 2001, Trends in Neurosciences.

[41]  Leo Peichl,et al.  For whales and seals the ocean is not blue: a visual pigment loss in marine mammals* , 2001, The European journal of neuroscience.

[42]  J. Bowmaker,et al.  A Fully Functional Rod Visual Pigment in a Blind Mammal , 2000, The Journal of Biological Chemistry.

[43]  L. Peichl,et al.  Photoreceptor types and distributions in the retinae of insectivores , 2000, Visual Neuroscience.

[44]  Helga Kolb,et al.  The mammalian photoreceptor mosaic-adaptive design , 2000, Progress in Retinal and Eye Research.

[45]  A. Hendrickson,et al.  Nocturnal tarsier retina has both short and long/medium‐wavelength cones in an unusual topography , 2000, The Journal of comparative neurology.

[46]  M. Antoch,et al.  The Murine Cone Photoreceptor A Single Cone Type Expresses Both S and M Opsins with Retinal Spatial Patterning , 2000, Neuron.

[47]  S. Yokoyama Molecular evolution of vertebrate visual pigments , 2000, Progress in Retinal and Eye Research.

[48]  Á. Szél,et al.  Photoreceptor distribution in the retinas of subprimate mammals. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[49]  U. Grünert,et al.  Spatial order in short-wavelength-sensitive cone photoreceptors: a comparative study of the primate retina. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.

[50]  J. Hemmi Dichromatic colour vision in an Australian marsupial, the tammar wallaby , 1999, Journal of Comparative Physiology A.

[51]  J. Nathans The Evolution and Physiology of Human Color Vision Insights from Molecular Genetic Studies of Visual Pigments , 1999, Neuron.

[52]  U. Grünert,et al.  Distribution of photoreceptor types in the retina of a marsupial, the tammar wallaby (Macropus eugenii) , 1999, Visual Neuroscience.

[53]  E. Pugh,et al.  UV- and Midwave-Sensitive Cone-Driven Retinal Responses of the Mouse: A Possible Phenotype for Coexpression of Cone Photopigments , 1999, The Journal of Neuroscience.

[54]  E. Nevo Mosaic Evolution of Subterranean Mammals: Regression, Progression, and Global Convergence , 1999 .

[55]  G. H. Jacobs,et al.  Cone receptor variations and their functional consequences in two species of hamster , 1999, Visual Neuroscience.

[56]  G. H. Jacobs,et al.  Cone spectral sensitivity in the harbor seal (Phoca vitulina) and implications for color vision , 1998 .

[57]  R. Masland,et al.  The Major Cell Populations of the Mouse Retina , 1998, The Journal of Neuroscience.

[58]  L. Peichl,et al.  Absence of short‐wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia) , 1998, The European journal of neuroscience.

[59]  G H Jacobs,et al.  The topography of rod and cone photoreceptors in the retina of the ground squirrel , 1998, Visual Neuroscience.

[60]  D M Hunt,et al.  The visual pigments of the bottlenose dolphin (Tursiops truncatus) , 1998, Visual Neuroscience.

[61]  Á. Szél,et al.  Photopigments and photoentrainment in the Syrian golden hamster , 1997, Brain Research.

[62]  Á. Szél,et al.  Distribution of cone photoreceptors in the mammalian retina , 1996, Microscopy research and technique.

[63]  U. Griebel,et al.  Color Vision in the Manatee (Trichechus manatus) , 1996, Vision Research.

[64]  G. H. Jacobs,et al.  Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[65]  Á. Szél,et al.  Two different visual pigments in one retinal cone cell , 1994, Neuron.

[66]  G. Brainard,et al.  Ultraviolet regulation of neuroendocrine and circadian physiology in rodents , 1994, Vision Research.

[67]  L. Peichl,et al.  Morphological types of horizontal cell in rodent retinae: A comparison of rat, mouse, gerbil, and guinea pig , 1994, Visual Neuroscience.

[68]  G. H. Jacobs THE DISTRIBUTION AND NATURE OF COLOUR VISION AMONG THE MAMMALS , 1993, Biological reviews of the Cambridge Philosophical Society.

[69]  J. T. Erichsen,et al.  Immunocytochemical identification of photoreceptor populations in the tree shrew retina , 1993, Brain Research.

[70]  V. Govardovskii,et al.  Cones in the retina of the Mongolian gerbil,Meriones unguiculatus: an immunocytochemical and electrophysiological study , 1992, Vision Research.

[71]  G. H. Jacobs,et al.  Retinal receptors in rodents maximally sensitive to ultraviolet light , 1991, Nature.

[72]  Eberhart Zrenner,et al.  Is colour vision possible with only rods and blue-sensitive cones? , 1991, Nature.

[73]  P. Rakić,et al.  Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[74]  E. Nevo,et al.  The eye of the blind mole rat, Spalax ehrenbergi. Rudiment with hidden function? , 1990, Investigative ophthalmology & visual science.

[75]  V. Bruns,et al.  Sensory adaptations in subterranean mammals. , 1990, Progress in clinical and biological research.

[76]  L. Peichl,et al.  Topography of cones and rods in the tree shrew retina , 1989, The Journal of comparative neurology.

[77]  J. Pettigrew,et al.  Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity. , 1988, Brain, behavior and evolution.

[78]  T Henderson,et al.  THE VERTEBRATE EYE , 1943, The British journal of ophthalmology.

[79]  A. Rochon-Duvigneaud Les yeux et la vision des vertébrés , 1943 .

[80]  W. Kolmer,et al.  Die Netzhaut (Retina) , 1936 .

[81]  A. Krogh THE PROGRESS OF PHYSIOLOGY. , 1929, Science.