Diversity of mammalian photoreceptor properties: adaptations to habitat and lifestyle?
暂无分享,去创建一个
[1] Francisco Bozinovic,et al. Eye and vision in the subterranean rodent cururo (Spalacopus cyanus, octodontidae) , 2005, The Journal of comparative neurology.
[2] L. Peichl,et al. Retinal Cone Photoreceptors in Microchiropteran Bats , 2005 .
[3] D. Hunt,et al. The Cone Visual Pigments of Two Australian Marsupials, the Honey Possum and the Fat–Tailed Dunnart, With the Potential For Trichromacy , 2005 .
[4] L. Peichl,et al. Retinal Cone Types in Brown Bears and the Polar Bear Indicate Dichromatic Color Vision , 2005 .
[5] H. Wässle,et al. The Primordial, Blue-Cone Color System of the Mouse Retina , 2005, The Journal of Neuroscience.
[6] D. Hunt,et al. Cone topography and spectral sensitivity in two potentially trichromatic marsupials, the quokka (Setonix brachyurus) and quenda (Isoodon obesulus) , 2005, Proceedings of the Royal Society B: Biological Sciences.
[7] Á. Szél,et al. Photopigment coexpression in mammals: comparative and developmental aspects. , 2005, Histology and histopathology.
[8] G. H. Jacobs,et al. Photoreceptors and photopigments in a subterranean rodent, the pocket gopher (Thomomys bottae) , 2005, Journal of Comparative Physiology A.
[9] Heinz Wässle,et al. Parallel processing in the mammalian retina , 2004, Nature Reviews Neuroscience.
[10] G. H. Jacobs,et al. Evolution of vertebrate colour vision , 2004, Clinical & experimental optometry.
[11] J. Bowmaker,et al. A novel amino acid substitution is responsible for spectral tuning in a rodent violet-sensitive visual pigment. , 2004, Biochemistry.
[12] G. H. Jacobs,et al. Influence of cone pigment coexpression on spectral sensitivity and color vision in the mouse , 2004, Vision Research.
[13] J. Graves,et al. Cone visual pigments of the Australian marsupials, the stripe-faced and fat-tailed dunnarts: Sequence and inferred spectral properties , 2004, Visual Neuroscience.
[14] Pavel Nemec,et al. Unusual cone and rod properties in subterranean African mole‐rats (Rodentia, Bathyergidae) , 2004, The European journal of neuroscience.
[15] S. Mills,et al. Identification of retinal neurons in a regressive rodent eye (the naked mole-rat) , 2004, Visual Neuroscience.
[16] Jeffrey P. Mower,et al. Molecular evolution of bat color vision genes. , 2003, Molecular biology and evolution.
[17] G. H. Jacobs,et al. Cone photopigments in nocturnal and diurnal procyonids , 1992, Journal of Comparative Physiology A.
[18] G. H. Jacobs,et al. Spectral sensitivity of ground squirrel cones measured with ERG flicker photometry , 1985, Journal of Comparative Physiology A.
[19] York Winter,et al. Ultraviolet vision in a bat , 2003, Nature.
[20] G. H. Jacobs,et al. Topography of Photoreceptors and Retinal Ganglion Cells in the Spotted Hyena (Crocuta crocuta) , 2003, Brain, Behavior and Evolution.
[21] J. Eklöf,et al. Vision complements echolocation in an aerial-hawking bat , 2003, Naturwissenschaften.
[22] D. Dacey,et al. Colour coding in the primate retina: diverse cell types and cone-specific circuitry , 2003, Current Opinion in Neurobiology.
[23] L. Peichl,et al. Retinal spectral sensitivity, fur coloration, and urine reflectance in the genus octodon (rodentia): implications for visual ecology. , 2003, Investigative ophthalmology & visual science.
[24] L. Beazley,et al. Topographies of retinal cone photoreceptors in two Australian marsupials , 2003, Visual Neuroscience.
[25] S. Deeb,et al. The cone visual pigments of an Australian marsupial, the tammar wallaby (Macropus eugenii): sequence, spectral tuning, and evolution. , 2003, Molecular biology and evolution.
[26] D. H. Levenson,et al. Genetic evidence for the ancestral loss of short-wavelength-sensitive cone pigments in mysticete and odontocete cetaceans , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[27] G. H. Jacobs,et al. Visual adaptations in a diurnal rodent, Octodon degus , 2003, Journal of Comparative Physiology A.
[28] L. Peichl,et al. Colour vision in aquatic mammals—facts and open questions , 2003 .
[29] P. Robinson,et al. An Investigation of the Color Vision of Marine Mammals , 2002 .
[30] E. Nevo,et al. Adaptive loss of ultraviolet‐sensitive/violet‐sensitive (UVS/VS) cone opsin in the blind mole rat (Spalax ehrenbergi) , 2002, The European journal of neuroscience.
[31] J. Bowmaker,et al. The molecular mechanism for the spectral shifts between vertebrate ultraviolet- and violet-sensitive cone visual pigments. , 2002, The Biochemical journal.
[32] P. Gouras,et al. Co-expression of murine opsins facilitates identifying the site of cone adaptation , 2002, Visual Neuroscience.
[33] E. Nevo,et al. The retina of Spalax ehrenbergi: novel histologic features supportive of a modified photosensory role. , 2002, Investigative ophthalmology & visual science.
[34] J. Bowmaker,et al. Visual pigment coexpression in Guinea pig cones: a microspectrophotometric study. , 2002, Investigative ophthalmology & visual science.
[35] L. Beazley,et al. Trichromacy in Australian Marsupials , 2002, Current Biology.
[36] A. Hendrickson,et al. Distribution and density of medium- and short-wavelength selective cones in the domestic pig retina. , 2002, Experimental eye research.
[37] J. Eklöf,et al. Precedence of visual cues in the emballonurid bat Balantiopteryx plicata , 2002 .
[38] S. Poopalasundaram,et al. Vision in the ultraviolet , 2001, Cellular and Molecular Life Sciences CMLS.
[39] Á. Szél,et al. Short and mid‐wavelength cone distribution in a nocturnal Strepsirrhine primate (Microcebus murinus) , 2001, The Journal of comparative neurology.
[40] J. Neitz,et al. The uncommon retina of the common house mouse , 2001, Trends in Neurosciences.
[41] Leo Peichl,et al. For whales and seals the ocean is not blue: a visual pigment loss in marine mammals* , 2001, The European journal of neuroscience.
[42] J. Bowmaker,et al. A Fully Functional Rod Visual Pigment in a Blind Mammal , 2000, The Journal of Biological Chemistry.
[43] L. Peichl,et al. Photoreceptor types and distributions in the retinae of insectivores , 2000, Visual Neuroscience.
[44] Helga Kolb,et al. The mammalian photoreceptor mosaic-adaptive design , 2000, Progress in Retinal and Eye Research.
[45] A. Hendrickson,et al. Nocturnal tarsier retina has both short and long/medium‐wavelength cones in an unusual topography , 2000, The Journal of comparative neurology.
[46] M. Antoch,et al. The Murine Cone Photoreceptor A Single Cone Type Expresses Both S and M Opsins with Retinal Spatial Patterning , 2000, Neuron.
[47] S. Yokoyama. Molecular evolution of vertebrate visual pigments , 2000, Progress in Retinal and Eye Research.
[48] Á. Szél,et al. Photoreceptor distribution in the retinas of subprimate mammals. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.
[49] U. Grünert,et al. Spatial order in short-wavelength-sensitive cone photoreceptors: a comparative study of the primate retina. , 2000, Journal of the Optical Society of America. A, Optics, image science, and vision.
[50] J. Hemmi. Dichromatic colour vision in an Australian marsupial, the tammar wallaby , 1999, Journal of Comparative Physiology A.
[51] J. Nathans. The Evolution and Physiology of Human Color Vision Insights from Molecular Genetic Studies of Visual Pigments , 1999, Neuron.
[52] U. Grünert,et al. Distribution of photoreceptor types in the retina of a marsupial, the tammar wallaby (Macropus eugenii) , 1999, Visual Neuroscience.
[53] E. Pugh,et al. UV- and Midwave-Sensitive Cone-Driven Retinal Responses of the Mouse: A Possible Phenotype for Coexpression of Cone Photopigments , 1999, The Journal of Neuroscience.
[54] E. Nevo. Mosaic Evolution of Subterranean Mammals: Regression, Progression, and Global Convergence , 1999 .
[55] G. H. Jacobs,et al. Cone receptor variations and their functional consequences in two species of hamster , 1999, Visual Neuroscience.
[56] G. H. Jacobs,et al. Cone spectral sensitivity in the harbor seal (Phoca vitulina) and implications for color vision , 1998 .
[57] R. Masland,et al. The Major Cell Populations of the Mouse Retina , 1998, The Journal of Neuroscience.
[58] L. Peichl,et al. Absence of short‐wavelength sensitive cones in the retinae of seals (Carnivora) and African giant rats (Rodentia) , 1998, The European journal of neuroscience.
[59] G H Jacobs,et al. The topography of rod and cone photoreceptors in the retina of the ground squirrel , 1998, Visual Neuroscience.
[60] D M Hunt,et al. The visual pigments of the bottlenose dolphin (Tursiops truncatus) , 1998, Visual Neuroscience.
[61] Á. Szél,et al. Photopigments and photoentrainment in the Syrian golden hamster , 1997, Brain Research.
[62] Á. Szél,et al. Distribution of cone photoreceptors in the mammalian retina , 1996, Microscopy research and technique.
[63] U. Griebel,et al. Color Vision in the Manatee (Trichechus manatus) , 1996, Vision Research.
[64] G. H. Jacobs,et al. Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[65] Á. Szél,et al. Two different visual pigments in one retinal cone cell , 1994, Neuron.
[66] G. Brainard,et al. Ultraviolet regulation of neuroendocrine and circadian physiology in rodents , 1994, Vision Research.
[67] L. Peichl,et al. Morphological types of horizontal cell in rodent retinae: A comparison of rat, mouse, gerbil, and guinea pig , 1994, Visual Neuroscience.
[68] G. H. Jacobs. THE DISTRIBUTION AND NATURE OF COLOUR VISION AMONG THE MAMMALS , 1993, Biological reviews of the Cambridge Philosophical Society.
[69] J. T. Erichsen,et al. Immunocytochemical identification of photoreceptor populations in the tree shrew retina , 1993, Brain Research.
[70] V. Govardovskii,et al. Cones in the retina of the Mongolian gerbil,Meriones unguiculatus: an immunocytochemical and electrophysiological study , 1992, Vision Research.
[71] G. H. Jacobs,et al. Retinal receptors in rodents maximally sensitive to ultraviolet light , 1991, Nature.
[72] Eberhart Zrenner,et al. Is colour vision possible with only rods and blue-sensitive cones? , 1991, Nature.
[73] P. Rakić,et al. Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.
[74] E. Nevo,et al. The eye of the blind mole rat, Spalax ehrenbergi. Rudiment with hidden function? , 1990, Investigative ophthalmology & visual science.
[75] V. Bruns,et al. Sensory adaptations in subterranean mammals. , 1990, Progress in clinical and biological research.
[76] L. Peichl,et al. Topography of cones and rods in the tree shrew retina , 1989, The Journal of comparative neurology.
[77] J. Pettigrew,et al. Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: implications for visual acuity. , 1988, Brain, behavior and evolution.
[78] T Henderson,et al. THE VERTEBRATE EYE , 1943, The British journal of ophthalmology.
[79] A. Rochon-Duvigneaud. Les yeux et la vision des vertébrés , 1943 .
[80] W. Kolmer,et al. Die Netzhaut (Retina) , 1936 .
[81] A. Krogh. THE PROGRESS OF PHYSIOLOGY. , 1929, Science.