Modern map methods in particle beam physics

Dynamics. Differential Algebraic Techniques. Fields. Maps: Calculation. Maps: Properties. Spectrometers. Repetitive Systems.

[1]  K. Brown,et al.  First‐ and Second‐Order Magnetic Optics Matrix Equations for the Midplane of Uniform‐Field Wedge Magnets , 1964 .

[2]  Johannes van Zeijts,et al.  New Features in the Design Code TLIE , 1993 .

[3]  G. Glish,et al.  Mass spectrometry/mass spectrometry: techniques and applications of tandem mass spectrometry , 1990 .

[4]  Berz,et al.  Analytical theory of arbitrary-order achromats. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Yiton T. Yan Zlib and related programs for beam dynamics studies , 1993 .

[6]  The computation of aberrations of fringing fields of magnetic multipoles and sector magnets using differential algebra , 1990 .

[7]  D. Carey Why a Second Order Magnetic Optical Achromat Works , 1980 .

[8]  A. Dragt,et al.  Normal form for mirror machine Hamiltonians , 1979 .

[9]  Martin Berz,et al.  Computational differentiation : techniques, applications, and tools , 1996 .

[10]  E. Griepentrog,et al.  Differential-algebraic equations and their numerical treatment , 1986 .

[11]  Berz Martin Differential Algebraic Techniques , 1999 .

[12]  M. Berz,et al.  Relations between elements of transfer matrices due to the condition of symplecticity , 1985 .

[13]  Sherrill,et al.  Reconstructive correction of aberrations in nuclear particle spectrographs. , 1993, Physical review. C, Nuclear physics.

[14]  Explicitly integrable polynomial Hamiltonians and evaluation of Lie transformations. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  M. Berz,et al.  COSY 5.0 — The fifth order code for corpuscular optical systems , 1987 .

[16]  Martin Berz,et al.  Differential algebraic description and analysis of trajectories in vacuum electronic devices including space-charge effects , 1988 .

[17]  M. H. Protter,et al.  THE SOLUTION OF THE PROBLEM OF INTEGRATION IN FINITE TERMS , 1970 .

[18]  T. Matsuo,et al.  Computer Program“TRIO”for Third Order Calculation of Ion Trajectory , 1976 .

[19]  R. Ruth,et al.  Long-term bounds on nonlinear Hamiltonian motion , 1992 .

[20]  Ramon E. Moore Reliability in computing: the role of interval methods in scientific computing , 1988 .

[21]  R. Risch The problem of integration in finite terms , 1969 .

[22]  G. H. Hofstätter,et al.  Rigorous lower bounds on the survival time in particle accelerators , 1996 .

[23]  Y.T. Yan ZLIB: a numerical library for differential algebra and Lie algebraic treatment of beam dynamics , 1991, Conference Record of the 1991 IEEE Particle Accelerator Conference.

[24]  Christian H. Bischof,et al.  Algorithms and design for a second-order automatic differentiation module , 1997, ISSAC.

[25]  L.,et al.  FIRST- AND SECOND-ORDER MATRIX THEORY FOR THE DESIGN OF BEAM TRANSPORT SYSTEMS AND CHARGED PARTICLE SPECTROMETERS. , 1967 .

[26]  M. Berz,et al.  COSY INFINITY and Its Applications in Nonlinear Dynamics , 1996 .

[27]  Khodr Shamseddine,et al.  Exception Handling in Derivative Computation with Nonarchimedean Calculus , 1996 .

[28]  Martin Berz,et al.  Verified Integration of ODEs and Flows Using Differential Algebraic Methods on High-Order Taylor Models , 1998, Reliab. Comput..

[29]  Martin Berz,et al.  5. Remainder Differential Algebras and Their Applications , 1996 .

[30]  L. H. Thomas The Kinematics of an electron with an axis , 1927 .

[31]  S. Parrott,et al.  Relativistic Electrodynamics and Differential Geometry , 1986 .

[32]  R. D. Ruth,et al.  Methods of stability analysis in nonlinear mechanics , 1989 .

[33]  M. Berz,et al.  The program HAMILTON for the analytic solution of the equations of motion through fifth order , 1987 .

[34]  K. L. Brown,et al.  A Second-Order Magnetic Optical Achromat , 1979, IEEE Transactions on Nuclear Science.

[35]  A. Dragt Elementary and advanced Lie algebraic methods with applications to accelerator design, electron microscopes, and light optics , 1987 .

[36]  B. Franzke The heavy ion storage and cooler ring project ESR at GSI , 1987 .

[37]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[38]  C. Tompkins,et al.  Elementary numerical analysis , 1971 .

[39]  W. W. Buechner,et al.  Broad‐Range Magnetic Spectrograph , 1956 .

[40]  Differential algebraic methods for obtaining approximate numerical solutions to the Hamilton-Jacobi equation , 1990 .

[41]  I. Daubechies Ten Lectures on Wavelets , 1992 .

[42]  Robert H. Risch ALGEBRAIC PROPERTIES OF THE ELEMENTARY FUNCTIONS OF ANALYSIS. , 1979 .

[43]  F. Christoph Iselin,et al.  The CLASSIC Project , 1997 .

[44]  Martin Berz,et al.  Calculus and Numerics on Levi-Civita Fields , 1996 .

[45]  V. Taivassalo,et al.  The Z4 orbit code and the focusing bar fields used calculations for superconducting cyclotrons , 1986 .

[46]  W. Wan Theory and Applications of Arbitrary-Order Achromats , 1995 .

[47]  L. Dixon,et al.  Automatic differentiation of algorithms , 2000 .

[48]  J. Wouters,et al.  TOFI: An isochronous time-of-flight mass spectrometer , 1987 .

[49]  A. Dragt,et al.  Lectures on nonlinear orbit dynamics , 1982 .

[50]  M. Berz High‐order computation and normal form analysis of repetitive systems , 1992 .

[51]  Martin Berz,et al.  The method of power series tracking for the mathematical description of beam dynamics , 1987 .

[52]  Henri Poincaré,et al.  New methods of celestial mechanics , 1967 .

[53]  Samuel D. Conte,et al.  Elementary Numerical Analysis , 1980 .

[54]  S. Russenschuck A Computer Program for the Design of Superconducting Accelerator Magnets , 1995 .

[55]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[56]  E. Courant,et al.  Theory of the Alternating-Gradient Synchrotron , 1958 .

[57]  Martin Berz,et al.  COSY INFINITY version 8 , 1999 .

[58]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[59]  V. Yakimenko,et al.  The spin motion calculation using Lie method in collider nonlinear magnetic field , 1991, Conference Record of the 1991 IEEE Particle Accelerator Conference.

[60]  J. Ritt,et al.  Integration in finite terms : Liouville's theory of elementary methods , 1948 .

[61]  Willard L. Miranker,et al.  Self-Validating Numerics for Function Space Problems: Computation with Guarantees for Differential and Integral Equations , 1984 .

[62]  Martin Berz,et al.  Arbitrary order description of arbitrary particle optical systems , 1990 .

[63]  G. Alefeld,et al.  Introduction to Interval Computation , 1983 .

[64]  John M. Finn,et al.  Lie Series and Invariant Functions for Analytic Symplectic Maps , 1976 .

[65]  Martin Berz,et al.  Computation and Application of Taylor Polynomials with Interval Remainder Bounds , 1998, Reliab. Comput..

[66]  Uri M. Ascher,et al.  Computer methods for ordinary differential equations and differential-algebraic equations , 1998 .

[67]  Martin Berz From Taylor series to Taylor models , 1997 .

[68]  Martin Berz,et al.  Efficient Control of the Dependency Problem Based on Taylor Model Methods , 1999, Reliab. Comput..

[69]  J. Watson,et al.  Introduction to mass spectrometry , 1985 .

[70]  R. Cotter,et al.  Mass Spectrometry , 1992, Bio/Technology.

[71]  M. Berz,et al.  COSY INFINITY version 7 , 1997, Proceedings of the 1997 Particle Accelerator Conference (Cat. No.97CH36167).

[72]  M. Berz Differential Algebraic Description of Beam Dynamics to Very High Orders , 1988 .

[73]  R. D. Ruth,et al.  Stability of orbits in nonlinear mechanics for finite but very long times , 1990 .

[74]  Martin Berz,et al.  Exact Bounds on the Long Term Stability of Weakly Nonlinear Systems Applied to the Design of Large S , 1994 .

[75]  V. L. Telegdi,et al.  Precession of the Polarization of Particles Moving in a Homogeneous Electromagnetic Field , 1959 .

[76]  松田 道彦 First order algebraic differential equations : a differential algebraic approach , 1980 .

[77]  M. Berz,et al.  Principles of GIOS and COSY , 1988 .

[78]  J. Ritt,et al.  Differential Equations from the Algebraic Standpoint , 1933, Nature.

[79]  Kyoko Makino,et al.  Rigorous analysis of nonlinear motion in particle accelerators , 1998 .

[80]  R. Gijbels,et al.  Inorganic mass spectrometry , 1989 .