A new flatness-based control of lateral vehicle dynamics

This paper presents a new concept for vehicle dynamics control (VDC). The control of the longitudinal vehicle dynamics is not discussed, since we are assuming that it is much slower and weakly coupled to the lateral and yawing dynamics. The actuators are considered to be the traction and the braking torques of the individual wheels and only the standard sensors of the common VDC system are used. A modular interface to the subordinate wheel control system is provided by choosing the yaw torque as a fictitious control input. The VDC system is designed by means of a two degrees-of-freedom control scheme. It comprises a flatness-based feedforward part and a stabilising feedback part. The reference trajectory generation is introduced for the flat output which is given by the lateral velocity of the vehicle. Thus an advantageous kind of body side-slip angle control is provided with the standard VDC system hardware. Extensive simulation studies show excellent performance of the designed control concept.

[1]  Sergey V. Drakunov,et al.  Yaw control algorithm via sliding mode control , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[2]  H Chou,et al.  Global vehicle control using differential braking torques and active suspension forces , 2005 .

[3]  Hans B. Pacejka,et al.  Tire and Vehicle Dynamics , 1982 .

[4]  U Hackenberg,et al.  DIE FAHRDYNAMISCHEN LEISTUNGEN DES FAHRER-FAHRZEUG-SYSTEMS IM STRASSENVERKEHR , 1982 .

[5]  M. Fliess,et al.  On Differentially Flat Nonlinear Systems , 1992 .

[6]  Alberto Isidori,et al.  Nonlinear Control Systems, Third Edition , 1995, Communications and Control Engineering.

[7]  Tor A. Johansen,et al.  Lateral vehicle stabilization using constrained nonlinear control , 2003, 2003 European Control Conference (ECC).

[8]  Hans B. Pacejka,et al.  Tyre Modelling for Use in Vehicle Dynamics Studies , 1987 .

[9]  M. Fliess,et al.  On non-asymptotic observation of nonlinear systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[10]  Veit Hagenmeyer Robust Nonlinear Tracking Control Based on Differential Flatness , 2002 .

[11]  Anders Kullgren,et al.  The Effectiveness of ESC (Electronic Stability Control) in Reducing Real Life Crashes and Injuries , 2005 .

[12]  Philippe Martin,et al.  A Lie-Backlund approach to equivalence and flatness of nonlinear systems , 1999, IEEE Trans. Autom. Control..

[13]  K. Schlacher,et al.  Ein Beitrag zur nichtlinearen Fahrdynamik-regelung: die differentielle Flachheit des Einspurmodells , 2005 .

[14]  I. Horowitz Synthesis of feedback systems , 1963 .

[15]  Georg Pfaff,et al.  FDR - DIE FAHRDYNAMIKREGELUNG VON BOSCH , 1994 .

[16]  Peter Zegelaar,et al.  Integrated vehicle control using steering and brakes , 2006 .

[17]  P. Riekert,et al.  Zur Fahrmechanik des gummibereiften Kraftfahrzeugs , 1941 .

[18]  Ralf Orend Steuerung der ebenen Fahrzeugbewegung mit optimaler Nutzung der Kraftschlusspotentiale aller vier Reifen (Vehicle Dynamics Feedforward Control with Optimal Utilisation of the Adhesion Potentials of all four Tyres) , 2005, Autom..

[19]  Kazuhiko Shimada,et al.  IMPROVEMENT OF VEHICLE MANEUVERABILITY BY DIRECT YAW MOMENT CONTROL. , 1992 .

[20]  Karl Naab,et al.  Regelsysteme zur Fahrzeugführung und -Stabilisierung in der Automobiltechnik , 1996 .

[21]  Masaki Yamamoto,et al.  ANALYSIS ON VEHICLE STABILITY IN CRITICAL CORNERING USING PHASE-PLANE METHOD , 1994 .

[22]  W. Rugh,et al.  On a stability theorem for nonlinear systems with slowly varying inputs , 1990 .

[23]  Anton van Zanten,et al.  Die Fahrdynamikregelung von Bosch , 1996 .

[24]  Rainer Dr Erhardt,et al.  FDR: Die Fahrdynamik-regelung von Bosch , 1994 .

[25]  S. Fuchshumer,et al.  Nonlinear Vehicle Dynamics Control - A Flatness Based Approach , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[26]  Veit Hagenmeyer,et al.  Flachheitsbasierter Entwurf von linearen und nichtlinearen Vorsteuerungen (Flatness-based Design of Linear and Nonlinear Feedforward Controls) , 2004 .

[27]  M. Rathinam,et al.  Configuration flatness of Lagrangian systems underactuated by one control , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[28]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[29]  M. Kelemen A stability property , 1986 .

[30]  Manfred Mitschke,et al.  Dynamik der Kraftfahrzeuge , 1972 .

[31]  Juergen Ackermann,et al.  Safe and Comfortable Travel by Robust Control , 1995 .