Magnesium Fluoride Electron-Selective Contacts for Crystalline Silicon Solar Cells.

In this study, we present a novel application of thin magnesium fluoride films to form electron-selective contacts to n-type crystalline silicon (c-Si). This allows the demonstration of a 20.1%-efficient c-Si solar cell. The electron-selective contact is composed of deposited layers of amorphous silicon (∼6.5 nm), magnesium fluoride (∼1 nm), and aluminum (∼300 nm). X-ray photoelectron spectroscopy reveals a work function of 3.5 eV at the MgF2/Al interface, significantly lower than that of aluminum itself (∼4.2 eV), enabling an Ohmic contact between the aluminum electrode and n-type c-Si. The optimized contact structure exhibits a contact resistivity of ∼76 mΩ·cm(2), sufficiently low for a full-area contact to solar cells, together with a very low contact recombination current density of ∼10 fA/cm(2). We demonstrate that electrodes functionalized with thin magnesium fluoride films significantly improve the performance of silicon solar cells. The novel contacts can potentially be implemented also in organic optoelectronic devices, including photovoltaics, thin film transistors, or light emitting diodes.

[1]  C. Voz,et al.  Transition metal oxides as hole-selective contacts in silicon heterojunctions solar cells , 2016 .

[2]  A. Javey,et al.  Efficient silicon solar cells with dopant-free asymmetric heterocontacts , 2016, Nature Energy.

[3]  Han-Don Um,et al.  Dopant-Free All-Back-Contact Si Nanohole Solar Cells Using MoOx and LiF Films. , 2016, Nano letters.

[4]  M. Hermle,et al.  Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells , 2015 .

[5]  G. Derry,et al.  Recommended values of clean metal surface work functions , 2015 .

[6]  Andrea Tomasi,et al.  22.5% efficient silicon heterojunction solar cell with molybdenum oxide hole collector , 2015 .

[7]  W. Lövenich,et al.  Organic-silicon Solar Cells Exceeding 20% Efficiency , 2015 .

[8]  A. Cuevas,et al.  Proof-of-Concept p-Type Silicon Solar Cells With Molybdenum Oxide Local Rear Contacts , 2015, IEEE Journal of Photovoltaics.

[9]  M. Werner,et al.  Tunnel oxide passivated carrier-selective contacts based on ultra-thin SiO2 layers grown by photo-oxidation or wet-chemical oxidation in ozonized water , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[10]  C. Battaglia,et al.  Molybdenum oxide MoOx: A versatile hole contact for silicon solar cells , 2014 .

[11]  Kyotaro Nakamura,et al.  Development of Heterojunction Back Contact Si Solar Cells , 2014, IEEE Journal of Photovoltaics.

[12]  Naoteru Matsubara,et al.  Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell , 2014, IEEE Journal of Photovoltaics.

[13]  C. Battaglia,et al.  Silicon heterojunction solar cell with passivated hole selective MoOx contact , 2014 .

[14]  Shui-Tong Lee,et al.  The role of a LiF layer on the performance of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/Si organic-inorganic hybrid solar cells , 2014 .

[15]  C. Battaglia,et al.  Hole selective MoOx contact for silicon solar cells. , 2014, Nano letters.

[16]  Jan Schmidt,et al.  Organic-silicon heterojunction solar cells: Open-circuit voltage potential and stability , 2013 .

[17]  C. Tracy,et al.  Surface passivation of n-type c-Si wafers by a-Si/SiO2/SiNx stack with <1 cm/s effective surface recombination velocity , 2013 .

[18]  J. Sturm,et al.  Hole-blocking titanium-oxide/silicon heterojunction and its application to photovoltaics , 2013 .

[19]  V. Dao,et al.  Effects of LiF/Al back electrode on the amorphous/crystalline silicon heterojunction solar cells , 2013 .

[20]  P. Yu,et al.  Micro-textured conductive polymer/silicon heterojunction photovoltaic devices with high efficiency , 2012 .

[21]  W. V. Sark,et al.  High quality crystalline silicon surface passivation by combined intrinsic and n-type hydrogenated amorphous silicon , 2011 .

[22]  E. Głowacki,et al.  Doping of organic semiconductors induced by lithium fluoride/aluminum electrodes studied by electron spin resonance and infrared reflection-absorption spectroscopy , 2011 .

[23]  M. Kondo,et al.  Nature of doped a-Si:H / c-Si interface recombination , 2009 .

[24]  Zhenghong Lu,et al.  Comparison of Alq3/alkali-metal fluoride/Al cathodes for organic electroluminescent devices , 2008 .

[25]  C. Ballif,et al.  Stretched-exponential a-Si:H∕c-Si interface recombination decay , 2008 .

[26]  B. Hoex,et al.  Real-time study of α-Si:H/c-Si heterointerface formation and epitaxial Si growth by spectroscopic ellipsometry, infrared spectroscopy, and second-harmonic generation , 2008 .

[27]  M. Kondo,et al.  Boron-doped a-Si:H∕c-Si interface passivation: Degradation mechanism , 2007 .

[28]  M. Kondo,et al.  Abruptness of a-Si :H/c-Si interface revealed by carrier lifetime measurements , 2007 .

[29]  S. Sze,et al.  Physics of Semiconductor Devices: Sze/Physics , 2006 .

[30]  Alain Fave,et al.  Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching , 2006 .

[31]  O. Stéphan,et al.  Light-emitting electrochemical cells using a molten delocalized salt , 2002 .

[32]  M. Fujihira,et al.  Alkali metal acetates as effective electron injection layers for organic electroluminescent devices , 2001 .

[33]  Soo Jin Chua,et al.  Lithium-fluoride-modified indium tin oxide anode for enhanced carrier injection in phenyl-substituted polymer electroluminescent devices , 2001 .

[34]  James Jungho Pak,et al.  Experiments on anisotropic etching of Si in TMAH , 2001 .

[35]  M. Green,et al.  24·5% Efficiency silicon PERT cells on MCZ substrates and 24·7% efficiency PERL cells on FZ substrates , 1999 .

[36]  N. Peyghambarian,et al.  Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices , 1998 .

[37]  S. Shaheen,et al.  Highly efficient and bright organic electroluminescent devices with an aluminum cathode , 1997 .

[38]  C. Tang,et al.  Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode , 1997 .

[39]  R. Sinton,et al.  Contactless determination of current–voltage characteristics and minority‐carrier lifetimes in semiconductors from quasi‐steady‐state photoconductance data , 1996 .

[40]  G. Jellison,et al.  Parameterization of the optical functions of amorphous materials in the interband region , 1996 .

[41]  Mojtaba Kahrizi,et al.  On hillocks generated during anisotropic etching of Si in TMAH , 1996 .

[42]  Martin A. Green,et al.  Twenty‐four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss , 1995 .

[43]  O. Tabata,et al.  Anisotropic etching of silicon in TMAH solutions , 1992 .

[44]  M. Green,et al.  22.8% efficient silicon solar cell , 1989 .

[45]  L. E. Regalado,et al.  Determination of the optical constants of MgF(2) and ZnS from spectrophotometric measurements and the classical oscillator method. , 1988, Applied optics.

[46]  M. Green,et al.  Light trapping properties of pyramidally textured surfaces , 1987 .

[47]  A. W. Blakers,et al.  19.1% efficient silicon solar cell , 1984 .

[48]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[49]  J. Pankove,et al.  Amorphous silicon as a passivant for crystalline silicon , 1979 .

[50]  N. S. Parmar Real-Time Study of A-Si : H / CSi Heterointerface Formation and Epitaxial Si Growth by Spectroscopic Ellipsometry , Infrared Spectroscopy and Second-Harmonic Generation , 2017 .

[51]  Shui-Tong Lee,et al.  Heterojunction with Organic Thin Layers on Silicon for Record Efficiency Hybrid Solar Cells , 2014 .

[52]  Martin A. Green,et al.  High performance light trapping textures for monocrystalline silicon solar cells , 2001 .

[53]  W. O. Barnard,et al.  Ohmic contacts for GaAs devices , 1991 .

[54]  J. Kolbe,et al.  Laser induced damage thresholds of dielectric coatings at 193 nm and correlations to optical constants and process parameters , 1990, Laser Damage.

[55]  W. Kern Cleaning solutions based on hydrogen peroxide for use in silicon semiconductor technology , 1970 .