Asymptotic tracking of spacecraft attitude motion with inertia matrix identification

The problem of a spacecraft tracking a desired trajectory is defined and addressed using adaptive feedback control. The control law, which has the form of a sixth-order dynamic compensator, does not require knowledge of the inertia of the spacecraft. A Lyapunov argument is used to show that tracking is achieved globally. A simple spin about the intermediate principal axis and a coning motion are commanded to illustrate the control algorithm. Finally, periodic commands are used to identify the inertia matrix of the spacecraft.

[1]  P. Hughes Spacecraft Attitude Dynamics , 1986 .

[2]  S. Shankar Sastry,et al.  Adaptive identification and control for manipulators without using joint accelerations , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[3]  J. Marsden,et al.  Stabilization of rigid body dynamicsby the Energy-Casimir method , 1990 .

[4]  Sahjendra Singh,et al.  Nonlinear Adaptive Attitude Control of Spacecraft , 1987, IEEE Transactions on Aerospace and Electronic Systems.

[5]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[6]  Robert H. Bishop,et al.  Adaptive nonlinear control of spacecraft , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[7]  J. Junkins,et al.  Optimal Continuous Torque Attitude Maneuvers , 1978 .

[8]  A. T. Zaremba,et al.  An adaptive scheme with parameter identification for spacecraft attitude control , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[9]  Anuradha M. Annaswamy,et al.  Stable Adaptive Systems , 1989 .

[10]  S. Skaar,et al.  Arbitrary large-angle satellite attitude maneuvers using an optimal reaction wheel power criterion , 1982 .

[11]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[12]  Bong Wie,et al.  Quaternion feedback for spacecraft large angle maneuvers , 1985 .

[13]  D. Aeyels On stabilization by means of the Energy-Casmir method , 1992 .

[14]  Haim Weiss,et al.  Quarternion feedback regulator for spacecraft eigenaxis rotations , 1989 .

[15]  J. Wen,et al.  Robust attitude stabilization of spacecraft using nonlinear quaternion feedback , 1995, IEEE Trans. Autom. Control..

[16]  J. Wen,et al.  The attitude control problem , 1991 .

[17]  D. T. Greenwood Principles of dynamics , 1965 .