New learning methods for supervised and unsupervised preference aggregation

In this paper we present a general treatment of the preference aggregation problem, in which multiple preferences over objects must be combined into a single consensus ranking. We consider two instances of this problem: unsupervised aggregation where no information about a target ranking is available, and supervised aggregation where ground truth preferences are provided. For each problem class we develop novel learning methods that are applicable to a wide range of preference types. Specifically, for unsupervised aggregation we introduce the Multinomial Preference model (MPM) which uses a multinomial generative process to model the observed preferences. For the supervised problem we develop a supervised extension for MPM and then propose two fully supervised models. The first model employs SVD factorization to derive effective item features, transforming the aggregation problems into a learning-to-rank one. The second model aims to eliminate the costly SVD factorization and instantiates a probabilistic CRF framework, deriving unary and pairwise potentials directly from the observed preferences. Using a probabilistic framework allows us to directly optimize the expectation of any target metric, such as NDCG or ERR. All the proposed models operate on pairwise preferences and can thus be applied to a wide range of preference types. We empirically validate the models on rank aggregation and collaborative filtering data sets and demonstrate superior empirical accuracy.

[1]  Tao Qin,et al.  Supervised rank aggregation , 2007, WWW '07.

[2]  David A. McAllester,et al.  Generalization bounds and consistency for latent-structural probit and ramp loss , 2011, MLSLP.

[3]  Tao Qin,et al.  A New Probabilistic Model for Rank Aggregation , 2010, NIPS.

[4]  Maksims Volkovs,et al.  BoltzRank: learning to maximize expected ranking gain , 2009, ICML '09.

[5]  Jeff A. Bilmes,et al.  Consensus ranking under the exponential model , 2007, UAI.

[6]  Craig Boutilier,et al.  Learning Mallows Models with Pairwise Preferences , 2011, ICML.

[7]  Filip Radlinski,et al.  Evaluating the accuracy of implicit feedback from clicks and query reformulations in Web search , 2007, TOIS.

[8]  Fernando Pereira,et al.  Shallow Parsing with Conditional Random Fields , 2003, NAACL.

[9]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[10]  Hugo Larochelle,et al.  Learning to rank by aggregating expert preferences , 2012, CIKM.

[11]  L. A. Goodman,et al.  Social Choice and Individual Values , 1951 .

[12]  Geoffrey E. Hinton,et al.  Restricted Boltzmann machines for collaborative filtering , 2007, ICML '07.

[13]  Javed A. Aslam,et al.  Models for metasearch , 2001, SIGIR '01.

[14]  Noah A. Smith,et al.  Softmax-Margin CRFs: Training Log-Linear Models with Cost Functions , 2010, NAACL.

[15]  Richard S. Zemel,et al.  Unsupervised Learning with Non-Ignorable Missing Data , 2005, AISTATS.

[16]  Toby Walsh,et al.  A Short Introduction to Preferences: Between AI and Social Choice , 2011 .

[17]  L. Thurstone The method of paired comparisons for social values , 1927 .

[18]  Quoc V. Le,et al.  Learning to Rank with Nonsmooth Cost Functions , 2006, Neural Information Processing Systems.

[19]  Jaana Kekäläinen,et al.  IR evaluation methods for retrieving highly relevant documents , 2000, SIGIR '00.

[20]  Christopher J. C. Burges,et al.  From RankNet to LambdaRank to LambdaMART: An Overview , 2010 .

[21]  R. A. Bradley,et al.  RANK ANALYSIS OF INCOMPLETE BLOCK DESIGNS THE METHOD OF PAIRED COMPARISONS , 1952 .

[22]  Dan Roth,et al.  Integer linear programming inference for conditional random fields , 2005, ICML.

[23]  Tao Qin,et al.  Global Ranking Using Continuous Conditional Random Fields , 2008, NIPS.

[24]  David F. Gleich,et al.  Rank aggregation via nuclear norm minimization , 2011, KDD.

[25]  John Guiver,et al.  Bayesian inference for Plackett-Luce ranking models , 2009, ICML '09.

[26]  Yasubumi Sakakibara,et al.  RNA secondary structural alignment with conditional random fields , 2005, ECCB/JBI.

[27]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[28]  Susan T. Dumais,et al.  Improving Web Search Ranking by Incorporating User Behavior Information , 2019, SIGIR Forum.

[29]  Toby Walsh,et al.  A Short Introduction to Preferences: Between Artificial Intelligence and Social Choice , 2011, A Short Introduction to Preferences.

[30]  C. L. Mallows NON-NULL RANKING MODELS. I , 1957 .

[31]  Charles L. A. Clarke,et al.  Reciprocal rank fusion outperforms condorcet and individual rank learning methods , 2009, SIGIR.

[32]  Fei Wang,et al.  Semi-supervised ranking aggregation , 2008, CIKM '08.

[33]  David Mease,et al.  A Penalized Maximum Likelihood Approach for the Ranking of College Football Teams Independent of Victory Margins , 2003 .

[34]  R. Luce,et al.  Individual Choice Behavior: A Theoretical Analysis. , 1960 .

[35]  Dan Roth,et al.  Unsupervised rank aggregation with distance-based models , 2008, ICML '08.

[36]  Maksims Volkovs,et al.  A flexible generative model for preference aggregation , 2012, WWW.

[37]  Yann Chevaleyre,et al.  A Short Introduction to Computational Social Choice , 2007, SOFSEM.

[38]  S ZemelRichard,et al.  New learning methods for supervised and unsupervised preference aggregation , 2014 .

[39]  Hang Li Learning to Rank for Information Retrieval and Natural Language Processing , 2011, Synthesis Lectures on Human Language Technologies.

[40]  Maksims Volkovs,et al.  CRF framework for supervised preference aggregation , 2013, CIKM.

[41]  Yuan Yao,et al.  Statistical ranking and combinatorial Hodge theory , 2008, Math. Program..

[42]  Javed A. Aslam,et al.  Condorcet fusion for improved retrieval , 2002, CIKM '02.

[43]  Jaime G. Carbonell,et al.  Protein Fold Recognition Using Segmentation Conditional Random Fields (SCRFs) , 2006, J. Comput. Biol..

[44]  Ronald Fagin,et al.  Efficient similarity search and classification via rank aggregation , 2003, SIGMOD '03.

[45]  R. Plackett The Analysis of Permutations , 1975 .

[46]  Hsuan-Tien Lin,et al.  An Ensemble Ranking Solution for the Yahoo ! Learning to Rank Challenge , 2010 .

[47]  Gregory N. Hullender,et al.  Learning to rank using gradient descent , 2005, ICML.

[48]  John D. Lafferty,et al.  Cranking: Combining Rankings Using Conditional Probability Models on Permutations , 2002, ICML.

[49]  Tao Qin,et al.  LETOR: Benchmark Dataset for Research on Learning to Rank for Information Retrieval , 2007 .

[50]  H. A. David,et al.  The method of paired comparisons , 1966 .

[51]  R. Duncan Luce,et al.  Individual Choice Behavior: A Theoretical Analysis , 1979 .

[52]  John Riedl,et al.  An algorithmic framework for performing collaborative filtering , 1999, SIGIR '99.

[53]  Chao Liu,et al.  Click chain model in web search , 2009, WWW '09.

[54]  Tom Minka,et al.  TrueSkill Through Time: Revisiting the History of Chess , 2007, NIPS.

[55]  Alexander J. Smola,et al.  Learning Graph Matching , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.