Development of bulk-type all-solid-state lithium-sulfur battery using LiBH4 electrolyte

Stable battery operation of a bulk-type all-solid-state lithium-sulfur battery was demonstrated by using a LiBH4 electrolyte. The electrochemical activity of insulating elemental sulfur as the positive electrode was enhanced by the mutual dispersion of elemental sulfur and carbon in the composite powders. Subsequently, a tight interface between the sulfur-carbon composite and the LiBH4 powders was manifested only by cold-pressing owing to the highly deformable nature of the LiBH4 electrolyte. The high reducing ability of LiBH4 allows using the use of a Li negative electrode that enhances the energy density. The results demonstrate the interface modification of insulating sulfur and the architecture of an all-solid-state Li-S battery configuration with high energy density.

[1]  Jun Chen,et al.  Sulfur–mesoporous carbon composites in conjunction with a novel ionic liquid electrolyte for lithium rechargeable batteries , 2008 .

[2]  Shiro Seki,et al.  Solvate Ionic Liquid Electrolyte for Li–S Batteries , 2013 .

[3]  Young-Su Lee,et al.  LiCe(BH 4) 3Cl, a new lithium-ion conductor and hydrogen storage material with isolated tetranuclear anionic clusters , 2012 .

[4]  S. Orimo,et al.  Complex Hydrides for Electrochemical Energy Storage , 2014 .

[5]  M. Watanabe,et al.  Solvent Effect of Room Temperature Ionic Liquids on Electrochemical Reactions in Lithium–Sulfur Batteries , 2013 .

[6]  Yoshiyuki Kawazoe,et al.  Fast-ionic conductivity of Li+in LiBH4 , 2011 .

[7]  D. Blanchard,et al.  Li-ion Conduction in the LiBH4:LiI System from Density Functional Theory Calculations and Quasi-Elastic Neutron Scattering , 2013 .

[8]  Jean-Marie Tarascon,et al.  Li-O2 and Li-S batteries with high energy storage. , 2011, Nature materials.

[9]  Masahiro Tatsumisago,et al.  Sulfur–carbon composite electrode for all-solid-state Li/S battery with Li2S–P2S5 solid electrolyte , 2011 .

[10]  K. Miwa,et al.  A novel inorganic solid state ion conductor for rechargeable Mg batteries. , 2014, Chemical communications.

[11]  H. Sakaebe,et al.  Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]− , 2006 .

[12]  S. Orimo,et al.  Lithium superionic conduction in lithium borohydride accompanied by structural transition , 2007 .

[13]  Takeshi Kobayashi,et al.  All-solid-state Li–sulfur batteries with mesoporous electrode and thio-LISICON solid electrolyte , 2013 .

[14]  A. Hayashi,et al.  Fabrication of favorable interface between sulfide solid electrolyte and Li metal electrode for bulk-type solid-state Li/S battery , 2012 .

[15]  S. Orimo,et al.  Sodium superionic conduction in Na2B12H12. , 2014, Chemical communications.

[16]  Jinkui Feng,et al.  Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte , 2006 .

[17]  T. Tatsumi,et al.  Reaction mechanism of all-solid-state lithium–sulfur battery with two-dimensional mesoporous carbon electrodes , 2013 .

[18]  A. Züttel,et al.  Complex hydrides for hydrogen storage. , 2007, Chemical reviews.

[19]  Li-Jun Wan,et al.  Lithium-sulfur batteries: electrochemistry, materials, and prospects. , 2013, Angewandte Chemie.

[20]  Y. Kawazoe,et al.  Diffuse and doubly split atom occupation in hexagonal LiBH4 , 2009 .

[21]  S. Orimo,et al.  Lithium Fast‐Ionic Conduction in Complex Hydrides: Review and Prospects , 2011 .

[22]  H. Oguchi,et al.  Lithium-ion conduction in complex hydrides LiAlH4 and Li3AlH6 , 2010 .

[23]  H. Oguchi,et al.  Sodium-ion conduction in complex hydrides NaAlH4 and Na3AlH6 , 2012 .

[24]  Jie Gao,et al.  Effects of Liquid Electrolytes on the Charge–Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies , 2011 .

[25]  Y. Filinchuk,et al.  New li ion conductors and solid state hydrogen storage materials: LiM(BH 4) 3Cl, M = La, Gd , 2012 .

[26]  Ryota Watanabe,et al.  All solid-state battery with sulfur electrode and thio-LISICON electrolyte , 2008 .

[27]  I. Honma,et al.  Quasi-Solid-State Lithium-Sulfur Battery Using Room Temperature Ionic Liquid-Li-salt-Fumed Silica Nanoparticle Composites as Electrolytes , 2012 .

[28]  A. Remhof,et al.  Complex hydrides with (BH(4))(-) and (NH(2))(-) anions as new lithium fast-ion conductors. , 2009, Journal of the American Chemical Society.

[29]  S. Ito,et al.  Electrical Conductivity, Self-Diffusivity and Electrolyte Performance of a Quasi-Solid-State Pseudo-Ternary System, Bis(trifluoromethanesulfonyl)amide-Based Room Temperature Ionic Liquid–Lithium Bis(trifluoromethanesulfonyl)amide–Fumed Silica Nanoparticles , 2013 .

[30]  H. Oguchi,et al.  Sodium ionic conduction in complex hydrides with [BH4]− and [NH2]− anions , 2012 .

[31]  Shengbo Zhang,et al.  Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions , 2013 .

[32]  S. Orimo,et al.  Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor. , 2009, Journal of the American Chemical Society.

[33]  L. Nazar,et al.  Advances in Li–S batteries , 2010 .

[34]  M. Watanabe,et al.  Reversibility of electrochemical reactions of sulfur supported on inverse opal carbon in glyme-Li salt molten complex electrolytes. , 2011, Chemical communications.

[35]  I. Honma,et al.  Development of lithium-sulfur batteries using room temperature ionic liquid-based quasi-solid-state electrolytes , 2014 .