Cross-Lingual Semantic Role Labeling With Model Transfer

Prior studies show that cross-lingual semantic role labeling (SRL) can be achieved by model transfer under the help of universal features. In this article, we fill the gap of cross-lingual SRL by proposing an end-to-end SRL model that incorporates a variety of universal features and transfer methods. We study both the bilingual transfer and multi-source transfer, under gold or machine-generated syntactic inputs, pre-trained high-order abstract features, and contextualized multilingual word representations. Experimental results on the Universal Proposition Bank corpus indicate that performances of the cross-lingual SRL can vary by leveraging different cross-lingual features. In addition, whether the features are gold-standard also has an impact on performances. Precisely, we find that gold syntax features are much more crucial for cross-lingual SRL, compared with the automatically-generated ones. Moreover, universal dependency structure features are able to give the best help, and both pre-trained high-order features and contextualized word representations can further bring significant improvements.

[1]  David A. McAllester,et al.  Machine Comprehension with Syntax, Frames, and Semantics , 2015, ACL.

[2]  Jörg Tiedemann Improving the Cross-Lingual Projection of Syntactic Dependencies , 2015, NODALIDA.

[3]  Jörg Tiedemann,et al.  Synthetic Treebanking for Cross-Lingual Dependency Parsing , 2016, J. Artif. Intell. Res..

[4]  Ding Liu,et al.  Semantic Role Features for Machine Translation , 2010, COLING.

[5]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[6]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[7]  Mohammad Sadegh Rasooli,et al.  Cross-Lingual Transfer of Semantic Roles: From Raw Text to Semantic Roles , 2019, IWCS.

[8]  Andrew McCallum,et al.  Linguistically-Informed Self-Attention for Semantic Role Labeling , 2018, EMNLP.

[9]  Guillaume Lample,et al.  Cross-lingual Language Model Pretraining , 2019, NeurIPS.

[10]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[11]  Alessandro Moschitti,et al.  High-Order Low-Rank Tensors for Semantic Role Labeling , 2015, HLT-NAACL.

[12]  Mirella Lapata,et al.  Using Semantic Roles to Improve Question Answering , 2007, EMNLP.

[13]  Tom M. Mitchell,et al.  Contextual Parameter Generation for Universal Neural Machine Translation , 2018, EMNLP.

[14]  Yijia Liu,et al.  Cross-Lingual BERT Transformation for Zero-Shot Dependency Parsing , 2019, EMNLP.

[15]  Jeffrey Dean,et al.  Efficient Estimation of Word Representations in Vector Space , 2013, ICLR.

[16]  Hai Zhao,et al.  Syntax for Semantic Role Labeling, To Be, Or Not To Be , 2018, ACL.

[17]  Timothy Dozat,et al.  Deep Biaffine Attention for Neural Dependency Parsing , 2016, ICLR.

[18]  David Yarowsky,et al.  Inducing Multilingual Text Analysis Tools via Robust Projection across Aligned Corpora , 2001, HLT.

[19]  Yunyao Li,et al.  Generating High Quality Proposition Banks for Multilingual Semantic Role Labeling , 2015, ACL.

[20]  Mohammad Sadegh Rasooli,et al.  Density-Driven Cross-Lingual Transfer of Dependency Parsers , 2015, EMNLP.

[21]  Hai Zhao,et al.  Dependency or Span, End-to-End Uniform Semantic Role Labeling , 2019, AAAI.

[22]  Noah A. Smith,et al.  Greedy, Joint Syntactic-Semantic Parsing with Stack LSTMs , 2016, CoNLL.

[23]  Daniel Jurafsky,et al.  Semantic Role Labeling Using Different Syntactic Views , 2005, ACL.

[24]  Claire Cardie,et al.  Multi-Source Cross-Lingual Model Transfer: Learning What to Share , 2018, ACL.

[25]  Yidong Chen,et al.  Deep Semantic Role Labeling with Self-Attention , 2017, AAAI.

[26]  Regina Barzilay,et al.  Cross-Lingual Alignment of Contextual Word Embeddings, with Applications to Zero-shot Dependency Parsing , 2019, NAACL.

[27]  Claire Cardie,et al.  Adversarial Deep Averaging Networks for Cross-Lingual Sentiment Classification , 2016, TACL.

[28]  Hai Zhao,et al.  A Unified Syntax-aware Framework for Semantic Role Labeling , 2018, EMNLP.

[29]  Lonneke van der Plas,et al.  Scaling up Automatic Cross-Lingual Semantic Role Annotation , 2011, ACL.

[30]  Stephan Vogel,et al.  Corpus Expansion for Statistical Machine Translation with Semantic Role Label Substitution Rules , 2011, ACL.

[31]  Guillaume Lample,et al.  Word Translation Without Parallel Data , 2017, ICLR.

[32]  Jungo Kasai,et al.  Low-Resource Parsing with Crosslingual Contextualized Representations , 2019, CoNLL.

[33]  Regina Barzilay,et al.  Multi-Source Domain Adaptation with Mixture of Experts , 2018, EMNLP.

[34]  Diego Marcheggiani,et al.  Encoding Sentences with Graph Convolutional Networks for Semantic Role Labeling , 2017, EMNLP.

[35]  Makoto Miwa,et al.  End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures , 2016, ACL.

[36]  Hai Zhao,et al.  Multilingual Dependency Learning: Exploiting Rich Features for Tagging Syntactic and Semantic Dependencies , 2009, CoNLL Shared Task.

[37]  Noah A. Smith,et al.  Polyglot Semantic Role Labeling , 2018, ACL.

[38]  Donghong Ji,et al.  Cross-Lingual Semantic Role Labeling with High-Quality Translated Training Corpus , 2020, ACL.

[39]  Ivan Titov,et al.  Cross-lingual Transfer of Semantic Role Labeling Models , 2013, ACL.

[40]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[41]  Omer Levy,et al.  Jointly Predicting Predicates and Arguments in Neural Semantic Role Labeling , 2018, ACL.

[42]  Luke S. Zettlemoyer,et al.  Deep Semantic Role Labeling: What Works and What’s Next , 2017, ACL.

[43]  Philip Resnik,et al.  Bootstrapping parsers via syntactic projection across parallel texts , 2005, Natural Language Engineering.

[44]  Luke S. Zettlemoyer,et al.  Deep Contextualized Word Representations , 2018, NAACL.

[45]  Kuzman Ganchev,et al.  Semantic Role Labeling with Neural Network Factors , 2015, EMNLP.

[46]  José M. F. Moura,et al.  Multiple Source Domain Adaptation with Adversarial Learning , 2018, ICLR.

[47]  Mirella Lapata,et al.  Cross-lingual Annotation Projection for Semantic Roles , 2009, J. Artif. Intell. Res..

[48]  Guy Lapalme,et al.  Framework for Abstractive Summarization using Text-to-Text Generation , 2011, Monolingual@ACL.

[49]  Mirella Lapata,et al.  Neural Semantic Role Labeling with Dependency Path Embeddings , 2016, ACL.

[50]  Anette Frank,et al.  Translate and Label! An Encoder-Decoder Approach for Cross-lingual Semantic Role Labeling , 2019, EMNLP/IJCNLP.

[51]  Graham Neubig,et al.  Choosing Transfer Languages for Cross-Lingual Learning , 2019, ACL.

[52]  Hai Zhao,et al.  Syntax-aware Multilingual Semantic Role Labeling , 2019, EMNLP.

[53]  Liang Xiao,et al.  Cross-Domain NER using Cross-Domain Language Modeling , 2019, ACL.

[54]  Naomie Salim,et al.  A framework for multi-document abstractive summarization based on semantic role labelling , 2015, Appl. Soft Comput..

[55]  Dan Roth,et al.  The Importance of Syntactic Parsing and Inference in Semantic Role Labeling , 2008, CL.

[56]  Pierre Nugues,et al.  Multilingual Semantic Role Labeling , 2009, CoNLL Shared Task.

[57]  Jure Leskovec,et al.  Strategies for Pre-training Graph Neural Networks , 2020, ICLR.

[58]  Joakim Nivre,et al.  Universal Dependency Annotation for Multilingual Parsing , 2013, ACL.

[59]  Yunyao Li,et al.  POLYGLOT: Multilingual Semantic Role Labeling with Unified Labels , 2016, ACL.