Performance analysis and multi-objective optimization of a new molten carbonate fuel cell system

The model of a new molten carbonate fuel cell (MCFC) system is established, in which multi-irreversibilities resulting from the anode, cathode, and ohm overpotentials are taken into account. Based on thermodynamic-electrochemical analysis and the semi-empirical equations available in literature, expressions of some main parameters such as the cell voltage, power output, efficiency and entropy production rate are derived. The influence of the gas inlet compositions on the electrode overpotentials is discussed in detail. It is found that there exist the optimal anode CO2 concentrations for different anode H2 concentrations. The performance characteristic curves of the MCFC system are represented through numerical calculation and the optimal operation regions of the main parameters are determined. Moreover, a new multi-objective function is used to further optimize the characteristics of the MCFC system, and consequently, the important problem of how to give consideration to both the efficiency and power output in the optimal operation region of the system is expounded.

[1]  Roberto Bove,et al.  Experimental comparison of MCFC performance using three different biogas types and methane , 2005 .

[2]  D. Simonsson,et al.  A heterogeneous model for the MCFC cathode , 1995 .

[3]  Barbara Bosio,et al.  A steady-state simulation tool for MCFC systems suitable for on-line applications , 2008 .

[4]  K. Hu,et al.  Study of LiFeO2 coated NiO as cathodes for MCFC by electrochemical impedance spectroscopy , 2004 .

[5]  J. R. Selman,et al.  The Polarization of Molten Carbonate Fuel Cell Electrodes I . Analysis of Steady‐State Polarization Data , 1991 .

[6]  Woonki Na,et al.  The efficient and economic design of PEM fuel cell systems by multi-objective optimization , 2007 .

[7]  Samir Bensaid,et al.  MCFC-based marine APU: comparison between conventional ATR and Cracking coupled with SR integrated inside the stack pressurized vessel , 2009 .

[8]  M. T. Casais,et al.  Analysis by electrochemical impedance spectroscopy of new MCFC cathode materials , 2000 .

[9]  Carina Lagergren,et al.  Mathematical modelling of the MCFC cathode , 1993 .

[10]  Andrew Dicks,et al.  Assessment of commercial prospects of molten carbonate fuel cells , 2000 .

[11]  Juncai Sun,et al.  Electrochemical performances of NANOCOFC in MCFC environments , 2010 .

[12]  Brant A. Peppley,et al.  Integrated fuel processors for fuel cell application : A review , 2007 .

[13]  Hiroo Yasue,et al.  Start-up, testing and operation of 1000 kW class MCFC power plant , 2000 .

[14]  R. O’Hayre,et al.  Fuel Cell Fundamentals , 2005 .

[15]  Xin-Jian Zhu,et al.  Nonlinear modeling and adaptive fuzzy control of MCFC stack , 2002 .

[16]  Ibrahim Dincer,et al.  Performance investigation of a combined MCFC system , 2009 .

[17]  Francisco Jurado Study of molten carbonate fuel cell—microturbine hybrid power cycles , 2002 .

[18]  Aristide F. Massardo,et al.  Hybrid systems for distributed power generation based on pressurisation and heat recovering of an existing 100 kW molten carbonate fuel cell , 2003 .

[19]  Christos A. Frangopoulos,et al.  Development of a model for thermoeconomic design and operation optimization of a PEM fuel cell system , 2006 .

[20]  Stanley J. Watowich,et al.  Optimal current paths for model electrochemical systems , 1986 .

[21]  Francisco Jurado,et al.  Combined molten carbonate fuel cell and gas turbine systems for efficient power and heat generation using biomass , 2003 .

[22]  H. Atakül,et al.  A basic model for analysis of molten carbonate fuel cell behavior , 2007 .

[23]  Rodolfo Taccani,et al.  Simulation of process for electrical energy production based on molten carbonate fuel cells , 2003 .

[24]  Manfred Bischoff,et al.  Operating experience with a 250 kWel molten carbonate fuel cell (MCFC) power plant , 2002 .

[25]  Carina Lagergren,et al.  Mathematical modelling of the MCFC cathode on the linear polarisation of the NiO cathode , 1997 .

[26]  S. Abdel-Khalik,et al.  Modeling the transport processes within multichannel molten carbonate fuel cells , 2003 .

[27]  Yingru Zhao,et al.  Modeling and optimization of a typical fuel cell-heat engine hybrid system and its parametric design criteria , 2009 .

[28]  Hee Chun Lim,et al.  Effect of various stack parameters on temperature rise in molten carbonate fuel cell stack operation , 2000 .

[29]  Hee Chun Lim,et al.  Consideration of numerical simulation parameters and heat transfer models for a molten carbonate fuel cell stack , 2002 .

[30]  G. Acres,et al.  Recent advances in fuel cell technology and its applications , 2001 .

[31]  Jincan Chen,et al.  A class of irreversible Carnot refrigeration cycles with a general heat transfer law , 1990 .

[32]  John Aurie Dean,et al.  Lange's Handbook of Chemistry , 1978 .

[33]  Faryar Jabbari,et al.  Analysis of a molten carbonate fuel cell: Numerical modeling and experimental validation , 2006 .

[34]  Eric S. Fraga,et al.  A multi-objective optimisation model for a general polymer electrolyte membrane fuel cell system , 2010 .

[35]  Vittorio Verda,et al.  Thermodynamic and economic optimization of a MCFC-based hybrid system for the combined production of electricity and hydrogen , 2010 .

[36]  J. Milewski,et al.  The control strategy for a molten carbonate fuel cell hybrid system , 2010 .

[37]  Gui-Yung Chung,et al.  Mathematical modeling of a molten carbonate fuel cell (MCFC) stack , 2010 .

[38]  Ivonne Sgura,et al.  Numerical modelling of MCFC cathode degradation in terms of morphological variations , 2011 .

[39]  Aiguo Liu,et al.  Modeling of molten carbonate fuel cell based on the volume–resistance characteristics and experimental analysis , 2010 .

[40]  Enrico Bocci,et al.  MCFC and microturbine power plant simulation , 2006 .

[41]  V. Antonucci,et al.  Technology up date and new strategies on fuel cells , 2001 .

[42]  Umberto Desideri,et al.  Analysis and optimization of hybrid MCFC gas turbines plants , 2003 .

[43]  Pyong Sik Pak,et al.  Characteristics and economic evaluation of a CO2-capturing repowering system with oxy-fuel combustion for utilizing exhaust gas of molten carbonate fuel cell (MCFC) , 2009 .

[44]  Gaetano Iaquaniello,et al.  Integration of biomass gasification with MCFC , 2006 .

[45]  Jenn-Jiang Hwang,et al.  Optimum start-up strategies for direct internal reforming molten carbonate fuel cell systems , 2010 .

[46]  Yingru Zhao,et al.  A new analytical approach to model and evaluate the performance of a class of irreversible fuel cells , 2008 .

[47]  Aiguo Liu,et al.  Performance analysis of a pressurized molten carbonate fuel cell/micro-gas turbine hybrid system , 2010 .

[48]  Young-Suk Kim,et al.  Cobalt and cerium coated Ni powder as a new candidate cathode material for MCFC , 2006 .

[49]  Michael C. Tucker,et al.  Progress in metal-supported solid oxide fuel cells: A review , 2010 .

[50]  Sergio Bittanti,et al.  Molten Carbonate Fuel Cell electrochemistry modelling , 2006 .

[51]  Jonghwa Chang,et al.  Evaluation of the high temperature electrolysis of steam to produce hydrogen , 2007 .

[52]  Hee Chun Lim,et al.  Analysis of temperature and pressure fields in molten carbonate fuel cell stacks , 2001 .

[53]  H.-J. Neef,et al.  International overview of hydrogen and fuel cell research , 2009 .

[54]  F. R. Foulkes,et al.  Fuel Cell Handbook , 1989 .

[55]  P. J Kortbeek,et al.  The `advanced DIR–MCFC development' project, an overview , 1998 .

[56]  Piotr Tomczyk,et al.  MCFC versus other fuel cells—Characteristics, technologies and prospects , 2006 .