Define the growth function γ associated with a finitely generated group and a specified choice of generators {gl7 -, gp} for the group as follows (compare [9]). For each positive integer s let γ(s) be the number of distinct group elements which can be expressed as words of length < s in the specified generators and their inverses. (For example, if the group is free abelian of rank 2 with specified generators x and y, then γ(s) = 2s + 2s -f 1.) We will see that the asympotic behavior of γ(s) as s —• oo is, to a certain extent, independent of the particular choice of generators (Lemma 1). This note will make use of inequalities relating curvature and volume, due to R. L. Bishop [1], [2] and P. Gύnther [3], to prove two theorems. Theorem 1. // M is a complete n-dimensional Riemannian manifold whose mean curvature tensor R^ is everywhere positive semidefinite, then the growth function γ(s) associated with any finitely generated subgroup of the fundamental group 7ΓjM must satisfy
[1]
R. Bishop,et al.
Geometry of Manifolds
,
1964
.
[2]
F. Hirzebruch.
The topology of normal singularities of an algebraic surface (d’après un article de D. Mumford)
,
1964
.
[3]
L. A. Shepp,et al.
Symmetric random walk
,
1962
.
[4]
Harry Kesten,et al.
Symmetric random walks on groups
,
1959
.
[5]
Hans-Ullrich Krause.
Gruppenstruktur und Gruppenbild
,
1953
.
[6]
A. Preissmann.
Quelques propriétés globales des espaces de Riemann
,
1942
.
[7]
S. Myers,et al.
Riemannian manifolds with positive mean curvature
,
1941
.
[8]
J. Synge.
ON THE CONNECTIVITY OF SPACES OF POSITIVE CURVATURE
,
1936
.
[9]
Wilhelm Magnus,et al.
Über diskontinuierliche Gruppen mit einer definierenden Relation. (Der Freiheitssatz).
,
1930
.