Dielectric polarization and particle shape effects

This article reviews polarizability properties of particles and clusters. Especially the effect of surface geometry is given attention. The important parameter of normalized dipolarizability is studied as function of the permittivity and the shape of the surface of the particle. For nonsymmetric particles, the quantity under interest is the average of the three polarizability dyadic eigenvalues. The normalized polarizability, although different for different shapes, has certain universal characteristics independent of the inclusion form. The canonical shapes (sphere, spheroids, ellipsoids, regular polyhedra, circular cylinder, semisphere, double sphere) are studied as well as the correlation of surface parameters with salient polarizability properties. These geometrical and surface parameters are essential in the material modeling problems in the nanoscale.

[1]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films , 1904 .

[2]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[3]  G. Szegö,et al.  Virtual mass and polarization , 1949 .

[4]  William Fuller Brown,et al.  Solid Mixture Permittivities , 1955 .

[5]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[6]  D. S. Jones Low Frequency Electromagnetic Radiation , 1979 .

[7]  M. Fixman Variational method for classical polarizabilities , 1981 .

[8]  P. Barber Absorption and scattering of light by small particles , 1984 .

[9]  Poladian Long-wavelength absorption in composites. , 1991, Physical review. B, Condensed matter.

[10]  Garboczi,et al.  Intrinsic conductivity of objects having arbitrary shape and conductivity. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  Ari Sihvola,et al.  Electromagnetic mixing formulas and applications , 1999 .

[12]  B. U. Felderhof,et al.  Longitudinal and transverse polarizability of the conducting double sphere , 2000 .

[13]  E. Garboczi,et al.  Intrinsic viscosity and the electrical polarizability of arbitrarily shaped objects. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Ari Sihvola,et al.  Electromagnetic Emergence in Metamaterials , 2002 .

[15]  Seppo Järvenpää,et al.  Singularity extraction technique for integral equation methods with higher order basis functions on plane triangles and tetrahedra , 2003 .

[16]  A. Sihvola,et al.  Dielectric response of matter with cubic, circular‐cylindrical, and spherical microstructure , 2004 .

[17]  Correlation between the geometrical characteristics and dielectric polarizability of polyhedra. , 2004 .

[18]  A. Sihvola,et al.  Polarizabilities of platonic solids , 2004, IEEE Transactions on Antennas and Propagation.

[19]  A. Sihvola,et al.  Polarizability of conducting sphere-doublets using series of images , 2004 .

[20]  A. Sihvola Multipole Theory in Electromagnetism: Classical, Quantum and Symmetry Aspects, with Applications , 2005 .

[21]  R. E. Raab,et al.  BOOK REVIEW: Multipole Theory in Electromagnetism: Classical, Quantum and Symmetry Aspects, with Applications , 2005 .

[22]  Ari Sihvola,et al.  Dielectric polarizability of circular cylinder , 2005 .

[23]  M. Pitkonen Polarizability of the dielectric double-sphere , 2006 .

[24]  Christian Brosseau,et al.  Modelling and simulation of dielectric heterostructures: a physical survey from an historical perspective , 2006 .

[25]  M. Pitkonen An explicit solution for the electric potential of the asymmetric dielectric double sphere , 2007 .

[26]  A. Sihvola,et al.  Polarizability of a dielectric hemisphere , 2007 .

[27]  C. Brosseau,et al.  Finite-Element Simulation of the Depolarization Factor of Arbitrarily Shaped Inclusions , 2006, IEEE Transactions on Magnetics.