Trust Region Newton Method for Logistic Regression
暂无分享,去创建一个
[1] J. Darroch,et al. Generalized Iterative Scaling for Log-Linear Models , 1972 .
[2] John G. Lewis,et al. Sparse matrix test problems , 1982, SGNM.
[3] T. Steihaug. The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .
[4] Jorge Nocedal,et al. On the limited memory BFGS method for large scale optimization , 1989, Math. Program..
[5] Jorge Nocedal,et al. A Numerical Study of the Limited Memory BFGS Method and the Truncated-Newton Method for Large Scale Optimization , 1991, SIAM J. Optim..
[6] Bernhard E. Boser,et al. A training algorithm for optimal margin classifiers , 1992, COLT '92.
[7] François-Xavier Le Dimet,et al. Numerical Experience with Limited-Memory Quasi-Newton and Truncated Newton Methods , 1993, SIAM J. Optim..
[8] John D. Lafferty,et al. Inducing Features of Random Fields , 1995, IEEE Trans. Pattern Anal. Mach. Intell..
[9] Chih-Jen Lin,et al. Newton's Method for Large Bound-Constrained Optimization Problems , 1999, SIAM J. Optim..
[10] S. Nash. A survey of truncated-Newton methods , 2000 .
[11] Olvi L. Mangasarian,et al. A finite newton method for classification , 2002, Optim. Methods Softw..
[12] Rob Malouf,et al. A Comparison of Algorithms for Maximum Entropy Parameter Estimation , 2002, CoNLL.
[13] Rong Yan,et al. A Faster Iterative Scaling Algorithm for Conditional Exponential Model , 2003, ICML.
[14] Yiming Yang,et al. RCV1: A New Benchmark Collection for Text Categorization Research , 2004, J. Mach. Learn. Res..
[15] Chih-Jen Lin,et al. Decomposition Methods for Linear Support Vector Machines , 2004, Neural Computation.
[16] T. Minka. A comparison of numerical optimizers for logistic regression , 2004 .
[17] S. Sathiya Keerthi,et al. A Modified Finite Newton Method for Fast Solution of Large Scale Linear SVMs , 2005, J. Mach. Learn. Res..
[18] Thorsten Joachims,et al. Training linear SVMs in linear time , 2006, KDD '06.
[19] Andrew McCallum,et al. An Introduction to Conditional Random Fields for Relational Learning , 2007 .
[20] Yoram Singer,et al. Pegasos: primal estimated sub-gradient solver for SVM , 2007, ICML '07.
[21] Alexander J. Smola,et al. Bundle Methods for Machine Learning , 2007, NIPS.
[22] Chih-Jen Lin,et al. Trust region Newton methods for large-scale logistic regression , 2007, ICML '07.
[23] Stephen P. Boyd,et al. An Interior-Point Method for Large-Scale l1-Regularized Logistic Regression , 2007, J. Mach. Learn. Res..
[24] David Madigan,et al. Algorithms for Sparse Linear Classifiers in the Massive Data Setting , 2008 .