A time-space spectral method for the time-space fractional Fokker-Planck equation and its inverse problem
暂无分享,去创建一个
Hui Zhang | Xiu Yang | Xiaoyun Jiang | Hui Zhang | Xiaoyun Jiang | Xiu Yang
[1] Xiaoyun Jiang,et al. Parameter estimation for the generalized fractional element network Zener model based on the Bayesian method , 2015 .
[2] Fawang Liu,et al. Fast Finite Difference Approximation for Identifying Parameters in a Two-dimensional Space-fractional Nonlocal Model with Variable Diffusivity Coefficients , 2016, SIAM J. Numer. Anal..
[3] JinRong Wang,et al. Approximate mild solutions of fractional stochastic evolution equations in Hilbert spaces , 2015, Appl. Math. Comput..
[4] V. Ervin,et al. Variational solution of fractional advection dispersion equations on bounded domains in ℝd , 2007 .
[5] W. Woyczynski,et al. Fractal Burgers Equations , 1998 .
[6] Enrico Scalas,et al. Coupled continuous time random walks in finance , 2006 .
[7] Cécile Piret,et al. A Chebyshev PseudoSpectral Method to Solve the Space-Time Tempered Fractional Diffusion Equation , 2014, SIAM J. Sci. Comput..
[8] I. Turner,et al. A high-order spectral method for the multi-term time-fractional diffusion equations , 2016 .
[9] O. Marichev,et al. Fractional Integrals and Derivatives: Theory and Applications , 1993 .
[10] Fawang Liu,et al. Stability and Convergence of an Effective Numerical Method for the Time-Space Fractional Fokker-Planck Equation with a Nonlinear Source Term , 2010 .
[11] Jianwei Zhou,et al. Error estimates of spectral Legendre-Galerkin methods for the fourth-order equation in one dimension , 2015, Appl. Math. Comput..
[12] Wei Cai,et al. Discovering variable fractional orders of advection-dispersion equations from field data using multi-fidelity Bayesian optimization , 2017, J. Comput. Phys..
[13] Fawang Liu,et al. A Novel High Order Space-Time Spectral Method for the Time Fractional Fokker-Planck Equation , 2015, SIAM J. Sci. Comput..
[14] Xiaoyun Jiang,et al. Parameter estimation for the fractional Schrödinger equation using Bayesian method , 2016 .
[15] J. P. Roop. Variational Solution of the Fractional Advection Dispersion Equation , 2004 .
[16] Fawang Liu,et al. A Crank-Nicolson ADI Spectral Method for a Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation , 2014, SIAM J. Numer. Anal..
[17] G. Zaslavsky. Chaos, fractional kinetics, and anomalous transport , 2002 .
[18] H. Srivastava,et al. Theory and Applications of Fractional Differential Equations , 2006 .
[19] J. Klafter,et al. Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker-Planck Equation Approach , 1999 .
[20] Fawang Liu,et al. Numerical Algorithms for Time-Fractional Subdiffusion Equation with Second-Order Accuracy , 2015, SIAM J. Sci. Comput..
[21] Zaid M. Odibat,et al. Rectangular decomposition method for fractional diffusion-wave equations , 2006, Appl. Math. Comput..
[22] R. Koeller. Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .
[23] I. Turner,et al. Time fractional advection-dispersion equation , 2003 .
[24] D. Kusnezov,et al. Quantum Levy Processes and Fractional Kinetics , 1999, chao-dyn/9901002.
[25] Fawang Liu,et al. Novel techniques in parameter estimation for fractional dynamical models arising from biological systems , 2011, Comput. Math. Appl..
[26] Wen Chen,et al. A new visco–elasto-plastic model via time–space fractional derivative , 2018 .
[27] Wenchang Tan,et al. An anomalous subdiffusion model for calcium spark in cardiac myocytes , 2007 .
[28] I. Podlubny. Fractional differential equations , 1998 .
[29] Enrico Scalas,et al. Waiting-times and returns in high-frequency financial data: an empirical study , 2002, cond-mat/0203596.
[30] Wei Jiang,et al. An efficient Chebyshev-tau method for solving the space fractional diffusion equations , 2013, Appl. Math. Comput..
[31] Bruce Ian Henry,et al. Existence of Turing Instabilities in a Two-Species Fractional Reaction-Diffusion System , 2002, SIAM J. Appl. Math..
[32] Alfio Borzì,et al. Analysis of splitting methods for solving a partial integro-differential Fokker-Planck equation , 2017, Appl. Math. Comput..
[33] D. Marquardt. An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .
[34] K. Burrage,et al. Some novel techniques of parameter estimation for dynamical models in biological systems , 2013 .
[35] Bo Yu,et al. Numerical algorithms to estimate relaxation parameters and Caputo fractional derivative for a fractional thermal wave model in spherical composite medium , 2016, Appl. Math. Comput..
[36] Guofei Pang,et al. Space-fractional advection-dispersion equations by the Kansa method , 2015, J. Comput. Phys..
[37] Jacek Banasiak,et al. Pseudospectral Laguerre approximation of transport-fragmentation equations , 2014, Appl. Math. Comput..
[38] Kenneth Levenberg. A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .
[39] Massimiliano Giona,et al. A theory of transport phenomena in disordered systems , 1992 .
[40] Ningming Nie,et al. A second order finite difference-spectral method for space fractional diffusion equations , 2014 .
[41] D. Benson,et al. The fractional‐order governing equation of Lévy Motion , 2000 .