A time-space spectral method for the time-space fractional Fokker-Planck equation and its inverse problem

Abstract In the paper, we consider a time-space spectral method to get the numerical solution of time-space fractional Fokker–Planck initial-boundary value problem. The temporal discretization is constructed by Jacobi polynomials and the spatial discretization is composed by Legendre polynomials. Moreover, we present the stability and convergence analysis strictly. The main advantages of the provided method are spectrally accurate in time and space and high computational efficiency. In addition, we introduce the inverse problem based on the spectral form with high-order accuracy of the direct problem for the first time, the Levenberg–Marquardt (L–M) method is proposed to estimate the two fractional derivatives α and 2β. Some numerical results presented are consistent with the theoretical analysis.

[1]  Xiaoyun Jiang,et al.  Parameter estimation for the generalized fractional element network Zener model based on the Bayesian method , 2015 .

[2]  Fawang Liu,et al.  Fast Finite Difference Approximation for Identifying Parameters in a Two-dimensional Space-fractional Nonlocal Model with Variable Diffusivity Coefficients , 2016, SIAM J. Numer. Anal..

[3]  JinRong Wang,et al.  Approximate mild solutions of fractional stochastic evolution equations in Hilbert spaces , 2015, Appl. Math. Comput..

[4]  V. Ervin,et al.  Variational solution of fractional advection dispersion equations on bounded domains in ℝd , 2007 .

[5]  W. Woyczynski,et al.  Fractal Burgers Equations , 1998 .

[6]  Enrico Scalas,et al.  Coupled continuous time random walks in finance , 2006 .

[7]  Cécile Piret,et al.  A Chebyshev PseudoSpectral Method to Solve the Space-Time Tempered Fractional Diffusion Equation , 2014, SIAM J. Sci. Comput..

[8]  I. Turner,et al.  A high-order spectral method for the multi-term time-fractional diffusion equations , 2016 .

[9]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[10]  Fawang Liu,et al.  Stability and Convergence of an Effective Numerical Method for the Time-Space Fractional Fokker-Planck Equation with a Nonlinear Source Term , 2010 .

[11]  Jianwei Zhou,et al.  Error estimates of spectral Legendre-Galerkin methods for the fourth-order equation in one dimension , 2015, Appl. Math. Comput..

[12]  Wei Cai,et al.  Discovering variable fractional orders of advection-dispersion equations from field data using multi-fidelity Bayesian optimization , 2017, J. Comput. Phys..

[13]  Fawang Liu,et al.  A Novel High Order Space-Time Spectral Method for the Time Fractional Fokker-Planck Equation , 2015, SIAM J. Sci. Comput..

[14]  Xiaoyun Jiang,et al.  Parameter estimation for the fractional Schrödinger equation using Bayesian method , 2016 .

[15]  J. P. Roop Variational Solution of the Fractional Advection Dispersion Equation , 2004 .

[16]  Fawang Liu,et al.  A Crank-Nicolson ADI Spectral Method for a Two-Dimensional Riesz Space Fractional Nonlinear Reaction-Diffusion Equation , 2014, SIAM J. Numer. Anal..

[17]  G. Zaslavsky Chaos, fractional kinetics, and anomalous transport , 2002 .

[18]  H. Srivastava,et al.  Theory and Applications of Fractional Differential Equations , 2006 .

[19]  J. Klafter,et al.  Anomalous Diffusion and Relaxation Close to Thermal Equilibrium: A Fractional Fokker-Planck Equation Approach , 1999 .

[20]  Fawang Liu,et al.  Numerical Algorithms for Time-Fractional Subdiffusion Equation with Second-Order Accuracy , 2015, SIAM J. Sci. Comput..

[21]  Zaid M. Odibat,et al.  Rectangular decomposition method for fractional diffusion-wave equations , 2006, Appl. Math. Comput..

[22]  R. Koeller Applications of Fractional Calculus to the Theory of Viscoelasticity , 1984 .

[23]  I. Turner,et al.  Time fractional advection-dispersion equation , 2003 .

[24]  D. Kusnezov,et al.  Quantum Levy Processes and Fractional Kinetics , 1999, chao-dyn/9901002.

[25]  Fawang Liu,et al.  Novel techniques in parameter estimation for fractional dynamical models arising from biological systems , 2011, Comput. Math. Appl..

[26]  Wen Chen,et al.  A new visco–elasto-plastic model via time–space fractional derivative , 2018 .

[27]  Wenchang Tan,et al.  An anomalous subdiffusion model for calcium spark in cardiac myocytes , 2007 .

[28]  I. Podlubny Fractional differential equations , 1998 .

[29]  Enrico Scalas,et al.  Waiting-times and returns in high-frequency financial data: an empirical study , 2002, cond-mat/0203596.

[30]  Wei Jiang,et al.  An efficient Chebyshev-tau method for solving the space fractional diffusion equations , 2013, Appl. Math. Comput..

[31]  Bruce Ian Henry,et al.  Existence of Turing Instabilities in a Two-Species Fractional Reaction-Diffusion System , 2002, SIAM J. Appl. Math..

[32]  Alfio Borzì,et al.  Analysis of splitting methods for solving a partial integro-differential Fokker-Planck equation , 2017, Appl. Math. Comput..

[33]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[34]  K. Burrage,et al.  Some novel techniques of parameter estimation for dynamical models in biological systems , 2013 .

[35]  Bo Yu,et al.  Numerical algorithms to estimate relaxation parameters and Caputo fractional derivative for a fractional thermal wave model in spherical composite medium , 2016, Appl. Math. Comput..

[36]  Guofei Pang,et al.  Space-fractional advection-dispersion equations by the Kansa method , 2015, J. Comput. Phys..

[37]  Jacek Banasiak,et al.  Pseudospectral Laguerre approximation of transport-fragmentation equations , 2014, Appl. Math. Comput..

[38]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[39]  Massimiliano Giona,et al.  A theory of transport phenomena in disordered systems , 1992 .

[40]  Ningming Nie,et al.  A second order finite difference-spectral method for space fractional diffusion equations , 2014 .

[41]  D. Benson,et al.  The fractional‐order governing equation of Lévy Motion , 2000 .