Application of Some Carbon Fabrics as Outstanding Supercapacitor Electrode Materials in Acetonitrile Based Electrolyte

[1]  Tokyo,et al.  Structural analysis of polycrystalline graphene systems by Raman spectroscopy , 2015, 1511.06659.

[2]  Patryk Przygocki,et al.  Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors , 2015 .

[3]  J. Jagiello,et al.  Dual gas analysis of microporous carbons using 2D-NLDFT heterogeneous surface model and combined adsorption data of N2 and CO2 , 2015 .

[4]  P. Taberna,et al.  Graphene-like carbide derived carbon for high-power supercapacitors , 2015 .

[5]  N. Motta,et al.  High performance all-carbon thin film supercapacitors , 2015 .

[6]  Y. Gogotsi,et al.  Highly porous carbon spheres for electrochemical capacitors and capacitive flowable suspension electrodes , 2014 .

[7]  P. Taberna,et al.  Ordered mesoporous silicon carbide-derived carbon for high-power supercapacitors , 2013 .

[8]  Jeongdai Jo,et al.  Activated carbon nanocomposite electrodes for high performance supercapacitors , 2013 .

[9]  J. P. Olivier,et al.  Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation , 2013, Adsorption.

[10]  F. Béguin,et al.  Carbon/carbon supercapacitors , 2013 .

[11]  R. Kötz,et al.  Cycle versus voltage hold – Which is the better stability test for electrochemical double layer capacitors? , 2013 .

[12]  E. Lust,et al.  Electrical double layer capacitors based on 1-ethyl-3-methylimidazolium tetrafluoroborate with small addition of acetonitrile , 2012 .

[13]  Yu-Kuei Hsu,et al.  Highly flexible supercapacitors with manganese oxide nanosheet/carbon cloth electrode , 2011 .

[14]  Alar Jänes,et al.  Electrical Double Layer Capacitors Based on Two 1-Ethyl-3-Methylimidazolium Ionic Liquids with Different Anions , 2011 .

[15]  F. Béguin,et al.  A symmetric carbon/carbon supercapacitor operating at 1.6 V by using a neutral aqueous solution , 2010 .

[16]  A. Lewandowski,et al.  Performance of carbon–carbon supercapacitors based on organic, aqueous and ionic liquid electrolytes , 2010 .

[17]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[18]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[19]  E. Lust,et al.  Energy and power performance of vanadium carbide derived carbon electrode materials for supercapacitors , 2009 .

[20]  F. Béguin,et al.  Saturation of subnanometer pores in an electric double-layer capacitor , 2009 .

[21]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[22]  John Parthenios,et al.  Chemical oxidation of multiwalled carbon nanotubes , 2008 .

[23]  Jingsong Huang,et al.  Theoretical model for nanoporous carbon supercapacitors. , 2008, Angewandte Chemie.

[24]  Bin Xu,et al.  Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors , 2007 .

[25]  Jaan Leis,et al.  The advanced carbide-derived carbon based supercapacitor , 2006 .

[26]  François Béguin,et al.  A High‐Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer , 2006 .

[27]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[28]  E. Lust,et al.  Influence of the solvent properties on the characteristics of a double layer capacitor , 2004 .

[29]  E. Lust,et al.  Electrochemical characteristics of nanoporous carbide-derived carbon materials in non-aqueous electrolyte solutions , 2004 .

[30]  E. Lust,et al.  Influence of nanoporous carbon electrode thickness on the electrochemical characteristics of a nanoporous carbon|tetraethylammonium tetrafluoroborate in acetonitrile solution interface , 2004 .

[31]  P. Taberna,et al.  Electrochemical Characteristics and Impedance Spectroscopy Studies of Carbon-Carbon Supercapacitors , 2003 .

[32]  Alar Jänes,et al.  Electrochemical properties of nanoporous carbon electrodes in various nonaqueous electrolytes , 2003 .

[33]  Hsisheng Teng,et al.  Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics , 2002 .

[34]  M. Seah,et al.  Quantitative XPS: I. Analysis of X-ray photoelectron intensities from elemental data in a digital photoelectron database , 2001 .

[35]  Doron Aurbach,et al.  Carbon Electrodes for Double‐Layer Capacitors I. Relations Between Ion and Pore Dimensions , 2000 .

[36]  J. Robertson,et al.  Interpretation of Raman spectra of disordered and amorphous carbon , 2000 .

[37]  R. Kötz,et al.  Principles and applications of electrochemical capacitors , 2000 .

[38]  Ferrer,et al.  Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films. , 1996, Physical Review B (Condensed Matter).

[39]  J. Jagiello Stable Numerical Solution of the Adsorption Integral Equation Using Splines , 1994 .

[40]  K. Gubbins,et al.  Pore size heterogeneity and the carbon slit pore: a density functional theory model , 1993 .

[41]  I. Tanahashi,et al.  COMPARISON OF THE ELECTROCHEMICAL PROPERTIES OF ELECTRIC DOUBLE-LAYER CAPACITORS WITH AN AQUEOUS ELECTROLYTE AND WITH A NONAQUEOUS ELECTROLYTE , 1990 .

[42]  I. Tanahashi,et al.  Electrochemical Characterization of Activated Carbon‐Fiber Cloth Polarizable Electrodes for Electric Double‐Layer Capacitors , 1990 .

[43]  P. Tarazona,et al.  Phase equilibria of fluid interfaces and confined fluids , 1987 .

[44]  P. Tarazona,et al.  Free-energy density functional for hard spheres. , 1985, Physical review. A, General physics.

[45]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[46]  J. Boer,et al.  Thet-curve of multimolecular N2-adsorption , 1966 .

[47]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[48]  Madeleine F Dupont,et al.  Separating faradaic and non-faradaic charge storage contributions in activated carbon electrochemical capacitors using electrochemical methods: I. step potential electrochemical spectroscopy , 2015 .

[49]  T. Romann,et al.  High Power Density Supercapacitors Based on the Carbon Dioxide Activated D-Glucose Derived Carbon Electrodes and Acetonitrile Electrolyte , 2013 .

[50]  E. Lust,et al.  Influence of Room Temperature Ionic Liquid Anion Chemical Composition and Electrical Charge Delocalization on the Supercapacitor Properties , 2012 .

[51]  K. Kontturi,et al.  Supercapacitors based on carbide-derived carbons synthesised using HCl and Cl2 as reactants , 2012, Journal of Solid State Electrochemistry.