Geometrical and hydrodynamical study of gas jets in packed and fluidized beds using magnetic resonance

Magnetic resonance (MR) was used to image the motion of particles and gas just above the distributor of 3D beds of particles fluidized by air. Three different distributors were used: (i) a single-orifice distributor, with orifice diameters 1.0–4.0 mm, (ii) a plate, drilled with a triangular array of 79 holes, each of 0.35 mm diameter, with a central nozzle containing a single hole of diameter 1.0, 2.5, or 9.0 mm, (iii) distributors with two or three orifices and diameters of 1.0 or 2.5 mm. It proved possible to extract geometrical information, such as the length of a jet, from MR images, each averaged over ∼5 min. Also, light was shed on the question of why is there such a discrepancy between reported jet-lengths. The fluidization state, the “start-up” procedure and also the number of holes all play a significant role in determining the measured distance a jet penetrates into a bed. The question as to whether the observed voids represent permanent jets or streams of bubbles was considered. The evidence from ultra-fast MR measurements strongly suggests that only the lower part of a jet from an orifice in a multi-orifice distributor is permanent; bubbles form at the top of the jet. Consequently, the top of each jet is transient. However, most of the jet from a single orifice is a permanent cavity when the bed of particles is not fluidized. The length of a jet was successfully correlated with operating variables using dimensional analysis. Finally, the flow of particles around a single jet was measured with high resolution MR. La resonance magnetique (RM) a servi pour illustrer le deplacement des particules et des gaz au-dessus du distributeur de lits de particules fluidisees par l'air en trois dimensions. On a utilise trois distributeurs differents: (i) un distributeur a orifice unique dont les diametres des orifices varient entre 1 et 4 mm, (ii) une plaque percee d'un reseau triangulaire de 79 trous d'un diametre de 0,35 mm avec une buse centrale comportant un trou unique d'un diametre de 1, 2,5 ou 9 mm et (iii) des distributeurs munis de deux ou trois orifices de 1 ou 2,5 mm de diametre. Il s'est avere possible d'extraire des informations geometriques, comme la longueur d'un jet, a partir d'images prises par RM, de moyenne superieure a 5 minutes chacune. On a egalement eclairci la question sur le grand ecart entre les longueurs de jet observees. L'etat de fluidisation, la procedure de mise en marche et aussi le nombre de trous jouent tous un role important dans la determination de la distance de penetration mesuree d'un jet dans un lit. On a etudie la question de savoir si les vides observes representent des jets permanents ou des flots de bulles. La preuve obtenue a partir de mesures par RM ultra-rapides porte fortement a croire que seule la partie inferieure d'un jet provenant d'un orifice d'un distributeur a orifices multiples est permanente; des bulles se forment sur le dessus du jet. Par consequent, le dessus de chaque jet est transitoire. Cependant, la majeure partie du jet provenant d'un seul orifice est une cavite permanente lorsque le lit de particules n'est pas fluidise. On est parvenu a mettre la longueur d'un jet en correlation avec des variables de fonctionnement au moyen de l'analyse dimensionnelle. Enfin, on a mesure le flux de particules autour d'un jet unique au moyen de la RM a haute resolution. Numeros dans le Systeme de reperage de l'information PACS: 45,70.-n, 47,55.Kf, 83,85.Fg

[1]  A J Sederman,et al.  Rapid two-dimensional imaging of bubbles and slugs in a three-dimensional, gas-solid, two-phase flow system using ultrafast magnetic resonance. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  Lynn F. Gladden,et al.  The nature of the flow just above the perforated plate distributor of a gas-fluidised bed, as imaged using magnetic resonance , 2006 .

[3]  A J Sederman,et al.  Real-time measurement of bubbling phenomena in a three-dimensional gas-fluidized bed using ultrafast magnetic resonance imaging. , 2006, Physical review letters.

[4]  Lynn F. Gladden,et al.  A study of the mixing of solids in gas-fluidized beds, using ultra-fast MRI , 2005 .

[5]  S. Vaccaro,et al.  A technique for measurement of the jet penetration height in fluidized beds by pressure signal analysis , 1997 .

[6]  V. G. Tuponogov,et al.  Measurement of jet angles in fluidized beds , 1995 .

[7]  J Hennig,et al.  RARE imaging: A fast imaging method for clinical MR , 1986, Magnetic resonance in medicine.

[8]  A. Haase,et al.  FLASH imaging: rapid NMR imaging using low flip-angle pulses. 1986. , 1986, Journal of magnetic resonance.

[9]  L. H. Chen,et al.  A study of jets in a three-dimensional gas fluidized bed , 1982 .

[10]  J. M. D. Merry,et al.  Fluid and particle entrainment into vertical jets in fluidized beds , 1976 .

[11]  J. M. D. Merry,et al.  Penetration of vertical jets into fluidized beds , 1975 .

[12]  P. Fennell,et al.  Rise velocities of bubbles and slugs in gas-fluidised beds : Ultra-fast magnetic resonance imaging , 2007 .

[13]  T. R. Blake,et al.  The nondimensionalization of equations describing fluidization with application to the correlation of jet penetration height , 1990 .

[14]  D. Keairns,et al.  Fate of solids fed pneumatically through a jet into a fluidized bed , 1984 .