High‐throughput screening identifies suppressors of mitochondrial fragmentation in OPA1 fibroblasts

Mutations in OPA1 cause autosomal dominant optic atrophy (DOA) as well as DOA+, a phenotype characterized by more severe neurological deficits. OPA1 deficiency causes mitochondrial fragmentation and also disrupts cristae, respiration, mitochondrial DNA (mtDNA) maintenance, and cell viability. It has not yet been established whether phenotypic severity can be modulated by genetic modifiers of OPA1. We screened the entire known mitochondrial proteome (1,531 genes) to identify genes that control mitochondrial morphology using a first‐in‐kind imaging pipeline. We identified 145 known and novel candidate genes whose depletion promoted elongation or fragmentation of the mitochondrial network in control fibroblasts and 91 in DOA+ patient fibroblasts that prevented mitochondrial fragmentation, including phosphatidyl glycerophosphate synthase (PGS1). PGS1 depletion reduces CL content in mitochondria and rebalances mitochondrial dynamics in OPA1‐deficient fibroblasts by inhibiting mitochondrial fission, which improves defective respiration, but does not rescue mtDNA depletion, cristae dysmorphology, or apoptotic sensitivity. Our data reveal that the multifaceted roles of OPA1 in mitochondria can be functionally uncoupled by modulating mitochondrial lipid metabolism, providing novel insights into the cellular relevance of mitochondrial fragmentation.

[1]  D. Krainc,et al.  Dominant mutations in MIEF1 affect mitochondrial dynamics and cause a singular late onset optic neuropathy , 2021, Molecular neurodegeneration.

[2]  Apekshya Panda,et al.  MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations , 2020, Nucleic Acids Res..

[3]  S. Hell,et al.  MICOS assembly controls mitochondrial inner membrane remodeling and crista junction redistribution to mediate cristae formation , 2020, The EMBO journal.

[4]  T. Endo,et al.  Lipid homeostasis in mitochondria , 2020, Biological chemistry.

[5]  S. Jakobs,et al.  Light Microscopy of Mitochondria at the Nanoscale. , 2020, Annual review of biophysics.

[6]  L. Scorrano,et al.  The cell biology of mitochondrial membrane dynamics , 2020, Nature Reviews Molecular Cell Biology.

[7]  John G Doench,et al.  A Compendium of Genetic Modifiers of Mitochondrial Dysfunction Reveals Intra-organelle Buffering , 2019, Cell.

[8]  Isabella Haberbosch,et al.  Software tools for automated transmission electron microscopy , 2018, Nature Methods.

[9]  Alan J. Robinson,et al.  MitoMiner v4.0: an updated database of mitochondrial localization evidence, phenotypes and diseases , 2018, Nucleic Acids Res..

[10]  A. Attie,et al.  Pptc7 is an essential phosphatase for promoting mammalian mitochondrial metabolism and biogenesis , 2018, Nature Communications.

[11]  C. La Morgia,et al.  Deciphering OPA1 mutations pathogenicity by combined analysis of human, mouse and yeast cell models. , 2018, Biochimica et biophysica acta. Molecular basis of disease.

[12]  R. Huganir,et al.  Mitochondrial Stasis Reveals p62-Mediated Ubiquitination in Parkin-Independent Mitophagy and Mitigates Nonalcoholic Fatty Liver Disease. , 2018, Cell metabolism.

[13]  T. Ban,et al.  Relationship between OPA1 and cardiolipin in mitochondrial inner-membrane fusion. , 2018, Biochimica et biophysica acta. Bioenergetics.

[14]  C. López-Otín,et al.  Ablation of the stress protease OMA1 protects against heart failure in mice , 2018, Science Translational Medicine.

[15]  R. L. Wiseman,et al.  The PERK Arm of the Unfolded Protein Response Regulates Mitochondrial Morphology during Acute Endoplasmic Reticulum Stress , 2018, Cell reports.

[16]  Masahiro Kato,et al.  Inactivation of cardiolipin synthase triggers changes in mitochondrial morphology , 2018, FEBS letters.

[17]  Kevin W. Eliceiri,et al.  ImageJ for the Next Generation of Scientific Image Data , 2019, Microscopy and Microanalysis.

[18]  Jan Dudek Role of Cardiolipin in Mitochondrial Signaling Pathways , 2017, Front. Cell Dev. Biol..

[19]  H. McBride,et al.  mTOR Controls Mitochondrial Dynamics and Cell Survival via MTFP1. , 2017, Molecular cell.

[20]  D. Sabatini,et al.  Rapid immunopurification of mitochondria for metabolite profiling and absolute quantification of matrix metabolites , 2017, Nature Protocols.

[21]  Thomas Meitinger,et al.  Biallelic Mutations in LIPT2 Cause a Mitochondrial Lipoylation Defect Associated with Severe Neonatal Encephalopathy. , 2017, American journal of human genetics.

[22]  K. Mihara,et al.  Molecular basis of selective mitochondrial fusion by heterotypic action between OPA1 and cardiolipin , 2017, Nature Cell Biology.

[23]  V. Desquiret-Dumas,et al.  Autophagy controls the pathogenicity of OPA1 mutations in dominant optic atrophy , 2017, Journal of cellular and molecular medicine.

[24]  David N. Mastronarde,et al.  Automated tilt series alignment and tomographic reconstruction in IMOD. , 2017, Journal of structural biology.

[25]  Kevin W. Eliceiri,et al.  ImageJ2: ImageJ for the next generation of scientific image data , 2017, BMC Bioinformatics.

[26]  T. Tatsuta Quantitative Analysis of Glycerophospholipids in Mitochondria by Mass Spectrometry. , 2017, Methods in molecular biology.

[27]  T. Wai,et al.  The membrane scaffold SLP2 anchors a proteolytic hub in mitochondria containing PARL and the i‐AAA protease YME1L , 2016, EMBO reports.

[28]  Kara L. Cerveny,et al.  Coincident Phosphatidic Acid Interaction Restrains Drp1 in Mitochondrial Division. , 2016, Molecular cell.

[29]  Werner J H Koopman,et al.  Multiplexed high-content analysis of mitochondrial morphofunction using live-cell microscopy , 2016, Nature Protocols.

[30]  D. Sabatini,et al.  Absolute Quantification of Matrix Metabolites Reveals the Dynamics of Mitochondrial Metabolism , 2016, Cell.

[31]  P. Chinnery,et al.  A multiple sclerosis‐like disorder in patients with OPA1 mutations , 2016, Annals of clinical and translational neurology.

[32]  E. Shoubridge,et al.  SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome , 2016, EMBO molecular medicine.

[33]  T. Kuwana,et al.  Mitochondrial dysfunction in an Opa1Q285STOP mouse model of dominant optic atrophy results from Opa1 haploinsufficiency , 2016, Cell Death and Disease.

[34]  T. Langer,et al.  OPA1 processing in cell death and disease – the long and short of it , 2016, Journal of Cell Science.

[35]  B. Salin,et al.  MICOS and phospholipid transfer by Ups2–Mdm35 organize membrane lipid synthesis in mitochondria , 2016, The Journal of cell biology.

[36]  D. Stojanovski,et al.  Cooperative and independent roles of the Drp1 adaptors Mff, MiD49 and MiD51 in mitochondrial fission , 2016, Journal of Cell Science.

[37]  Raymond Dalgleish,et al.  HGVS Recommendations for the Description of Sequence Variants: 2016 Update , 2016, Human mutation.

[38]  H. Prokisch,et al.  Disturbed mitochondrial and peroxisomal dynamics due to loss of MFF causes Leigh-like encephalopathy, optic atrophy and peripheral neuropathy , 2016, Journal of Medical Genetics.

[39]  P. Bénit,et al.  Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice , 2015, Science.

[40]  V. Mootha,et al.  Titration of mitochondrial fusion rescues Mff-deficient cardiomyopathy , 2015, The Journal of cell biology.

[41]  Robert W. Taylor,et al.  Fatal infantile mitochondrial encephalomyopathy, hypertrophic cardiomyopathy and optic atrophy associated with a homozygous OPA1 mutation , 2015, Journal of Medical Genetics.

[42]  William B. Mair,et al.  Hepatic Bmal1 Regulates Rhythmic Mitochondrial Dynamics and Promotes Metabolic Fitness. , 2015, Cell metabolism.

[43]  H. McBride,et al.  MAPL SUMOylation of Drp1 Stabilizes an ER/Mitochondrial Platform Required for Cell Death. , 2015, Molecular cell.

[44]  R. Schüle,et al.  Mutations in the UGO1-like protein SLC25A46 cause an optic atrophy spectrum disorder , 2015, Nature Genetics.

[45]  L. Scorrano,et al.  The Opa1-Dependent Mitochondrial Cristae Remodeling Pathway Controls Atrophic, Apoptotic, and Ischemic Tissue Damage , 2015, Cell metabolism.

[46]  William A. Flavahan,et al.  Mitochondrial Control by DRP1 in Brain Tumor Initiating Cells , 2015, Nature Neuroscience.

[47]  M. G. Giansanti,et al.  The multiple cellular functions of the oncoprotein Golgi phosphoprotein 3 , 2015, Oncotarget.

[48]  E. Bertini,et al.  'Behr syndrome' with OPA1 compound heterozygote mutations. , 2015, Brain : a journal of neurology.

[49]  G. Hotamisligil,et al.  Chronic enrichment of hepatic ER-mitochondria contact sites leads to calcium dependent mitochondrial dysfunction in obesity , 2014, Nature medicine.

[50]  David S. Park,et al.  OPA1‐dependent cristae modulation is essential for cellular adaptation to metabolic demand , 2014, The EMBO journal.

[51]  S. Züchner,et al.  Pure and syndromic optic atrophy explained by deep intronic OPA1 mutations and an intralocus modifier. , 2014, Brain : a journal of neurology.

[52]  D. Kirkpatrick,et al.  The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy , 2014, Nature.

[53]  C. López-Otín,et al.  OMA1 mediates OPA1 proteolysis and mitochondrial fragmentation in experimental models of ischemic kidney injury. , 2014, American journal of physiology. Renal physiology.

[54]  David S. Park,et al.  Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival , 2014, Nature Communications.

[55]  Prashant Mishra,et al.  Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. , 2014, Cell metabolism.

[56]  E. Rugarli,et al.  The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission , 2014, The Journal of cell biology.

[57]  C. Sardet,et al.  Mutations in human lipoyltransferase gene LIPT1 cause a Leigh disease with secondary deficiency for pyruvate and alpha-ketoglutarate dehydrogenase , 2013, Orphanet Journal of Rare Diseases.

[58]  S. Grinstein,et al.  Temporal Production of the Signaling Lipid Phosphatidic Acid by Phospholipase D2 Determines the Output of Extracellular Signal-Regulated Kinase Signaling in Cancer Cells , 2013, Molecular and Cellular Biology.

[59]  T. Wai,et al.  TRIAP1/PRELI complexes prevent apoptosis by mediating intramitochondrial transport of phosphatidic acid. , 2013, Cell metabolism.

[60]  B. Brügger,et al.  Quantitative analysis of cellular lipids by nano-electrospray ionization mass spectrometry. , 2013, Methods in molecular biology.

[61]  T. Langer,et al.  Intramitochondrial Transport of Phosphatidic Acid in Yeast by a Lipid Transfer Protein , 2012, Science.

[62]  G. Mollet,et al.  INF2 mutations in Charcot-Marie-Tooth disease with glomerulopathy. , 2011, The New England journal of medicine.

[63]  Matthew West,et al.  ER Tubules Mark Sites of Mitochondrial Division , 2011, Science.

[64]  G. Perkins,et al.  Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis. , 2011, Cell metabolism.

[65]  J. Lippincott-Schwartz,et al.  Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation , 2011, Proceedings of the National Academy of Sciences.

[66]  H. Ren,et al.  piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. , 2011, Developmental cell.

[67]  A. Fujiyama,et al.  MITOPLD is a mitochondrial protein essential for nuage formation and piRNA biogenesis in the mouse germline. , 2011, Developmental cell.

[68]  L. Scorrano,et al.  During autophagy mitochondria elongate, are spared from degradation and sustain cell viability , 2011, Nature Cell Biology.

[69]  P. Chinnery,et al.  OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution. , 2011, Genome research.

[70]  T. Prolla,et al.  Mitochondrial Fusion Is Required for mtDNA Stability in Skeletal Muscle and Tolerance of mtDNA Mutations , 2010, Cell.

[71]  J. Lippincott-Schwartz,et al.  Analysis of Mitochondrial Dynamics and Functions Using Imaging Approaches , 2010, Current protocols in cell biology.

[72]  D. Turnbull,et al.  Multi-system neurological disease is common in patients with OPA1 mutations , 2010, Brain : a journal of neurology.

[73]  H. Schwarz,et al.  "Tips and tricks" for high-pressure freezing of model systems. , 2010, Methods in cell biology.

[74]  S. Claypool Cardiolipin, a critical determinant of mitochondrial carrier protein assembly and function. , 2009, Biochimica et biophysica acta.

[75]  Jean-Claude Martinou,et al.  SLP‐2 is required for stress‐induced mitochondrial hyperfusion , 2009, The EMBO journal.

[76]  E. Müller,et al.  Characterization of OPA1 isoforms isolated from mouse tissues , 2008, Journal of neurochemistry.

[77]  A. M. van der Bliek,et al.  The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. , 2008, Molecular biology of the cell.

[78]  N. Nakamura,et al.  Regulation of mitochondrial morphology by USP30, a deubiquitinating enzyme present in the mitochondrial outer membrane. , 2008, Molecular biology of the cell.

[79]  Min Wu,et al.  Fission and selective fusion govern mitochondrial segregation and elimination by autophagy , 2008, The EMBO journal.

[80]  U. Wendel,et al.  Description of the mutations in 15 subjects with variant forms of maple syrup urine disease , 2007, Journal of Inherited Metabolic Disease.

[81]  D. Chan,et al.  OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L , 2007, The Journal of cell biology.

[82]  R. Youle,et al.  The mitochondrial E3 ubiquitin ligase MARCH5 is required for Drp1 dependent mitochondrial division , 2007, The Journal of cell biology.

[83]  D. Chan,et al.  OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L , 2007, The Journal of cell biology.

[84]  Seok-Yong Choi,et al.  A common lipid links Mfn-mediated mitochondrial fusion and SNARE-regulated exocytosis , 2006, Nature Cell Biology.

[85]  Daohong Chen,et al.  Identification and functional characterization of hCLS1, a human cardiolipin synthase localized in mitochondria. , 2006, The Biochemical journal.

[86]  Sara Cipolat,et al.  OPA1 Controls Apoptotic Cristae Remodeling Independently from Mitochondrial Fusion , 2006, Cell.

[87]  K. Mihara,et al.  Regulation of mitochondrial morphology through proteolytic cleavage of OPA1 , 2006, The EMBO journal.

[88]  Jing Wang,et al.  OPA1 R445H mutation in optic atrophy associated with sensorineural deafness , 2005, Annals of neurology.

[89]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[90]  A. Santel,et al.  The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells , 2005, Journal of Cell Science.

[91]  L. Scorrano,et al.  OPA1 requires mitofusin 1 to promote mitochondrial fusion. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[92]  G. Lenaers,et al.  Loss of OPA1 Perturbates the Mitochondrial Inner Membrane Structure and Integrity, Leading to Cytochrome c Release and Apoptosis* , 2003, The Journal of Biological Chemistry.

[93]  Erik E. Griffin,et al.  Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development , 2003, The Journal of cell biology.

[94]  P. Walther,et al.  Freeze substitution of high‐pressure frozen samples: the visibility of biological membranes is improved when the substitution medium contains water , 2002, Journal of microscopy.

[95]  J. Gilbert,et al.  Ganglioside-induced differentiation-associated protein-1 is mutant in Charcot-Marie-Tooth disease type 4A/8q21 , 2002, Nature Genetics.

[96]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[97]  B. Lorenz,et al.  Mutation spectrum and splicing variants in the OPA1 gene , 2001, Human Genetics.

[98]  Leann Tilley,et al.  Trafficking and assembly of the cytoadherence complex in Plasmodium falciparum‐infected human erythrocytes , 2001, The EMBO journal.

[99]  A. M. van der Bliek,et al.  Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. , 2001, Molecular biology of the cell.

[100]  E. Zrenner,et al.  OPA1 mutations in patients with autosomal dominant optic atrophy and evidence for semi-dominant inheritance. , 2001, Human molecular genetics.

[101]  W. Dowhan,et al.  The PEL1 Gene (Renamed PGS1) Encodes the Phosphatidylglycero-phosphate Synthase ofSaccharomyces cerevisiae * , 1998, The Journal of Biological Chemistry.

[102]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[103]  T. Lerman-Sagie Behr syndrome. , 1995, Pediatric neurology.