Notes on Linear Control Theory

[1]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[2]  Gene H. Golub,et al.  Ill-conditioned eigensystems and the computation of the Jordan canonical form , 1975, Milestones in Matrix Computation.

[3]  Finn E. Kydland,et al.  Time to Build and Aggregate Fluctuations Author ( s ) : , 2007 .

[4]  Tongxing Lu,et al.  Solution of the matrix equation AX−XB=C , 2005, Computing.

[5]  T. K. Nguyen Numerical solution of discrete-time algebraic Riccati equation , 1999 .

[6]  A. Laub,et al.  The matrix sign function , 1995, IEEE Trans. Autom. Control..

[7]  Petros G. Voulgaris,et al.  On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..

[8]  Ellen R. McGrattan,et al.  An equilibrium model of the business cycle with household production and fiscal policy , 1995 .

[9]  Kevin M. Murphy,et al.  Cattle Cycles , 1993, Journal of Political Economy.

[10]  Ellen R. McGrattan,et al.  A note on computing competitive equilibria in linear models , 1994 .

[11]  Alan J. Laub,et al.  A Newton-squaring algorithm for computing the negative invariant subspace of a matrix , 1993, IEEE Trans. Autom. Control..

[12]  Wen-Wei Lin,et al.  An iterative algorithm for the solution of the discrete-time algebraic Riccati equation , 1993 .

[13]  J. Demmel,et al.  On swapping diagonal blocks in real Schur form , 1993 .

[14]  Peter A. Zadrozny Errata to “analytic derivatives for estimation of linear dynamic models” , 1992 .

[15]  A. Laub Invariant Subspace Methods for the Numerical Solution of Riccati Equations , 1991 .

[16]  Morishige Kimura,et al.  Doubling algorithm for continuous-time algebraic Riccati equation , 1989 .

[17]  Peter A. Zadrozny Analytic Derivatives for Estimation of Linear Dynamic Models , 1988 .

[18]  Kevin M. Murphy,et al.  A Theory of Rational Addiction , 1988, Journal of Political Economy.

[19]  Peter Zadrozny,et al.  Gaussian Likelihood of Continuous-Time ARMAX Models When Data Are Stocks and Flows at Different Frequencies , 1988, Econometric Theory.

[20]  Sergio Rebelo,et al.  Production, growth and business cycles: II. New directions , 1988 .

[21]  Charles I. Plosser,et al.  Growth and Business Cycles I. The Basic Neoclassical Model , 1988 .

[22]  Peter A. Zadrozny Analytic Derivatives for Estimation of Discrete-Time, , 1988 .

[23]  R. Fletcher Practical Methods of Optimization , 1988 .

[24]  Morishige Kimura,et al.  Convergence of the doubling algorithm for the discrete-time algebraic Riccati equation , 1988 .

[25]  R. Byers Solving the algebraic Riccati equation with the matrix sign function , 1987 .

[26]  R. Kohn,et al.  Estimation, Filtering, and Smoothing in State Space Models with Incompletely Specified Initial Conditions , 1985 .

[27]  Judith Gardiner,et al.  A generalization of the matrix sign function solution for algebraic Riccati equations , 1985, 1985 24th IEEE Conference on Decision and Control.

[28]  Gerald Bierman Computational aspects of the matrix sign function solution to the ARE , 1984, The 23rd IEEE Conference on Decision and Control.

[29]  A. Siow,et al.  Occupational Choice under Uncertainty , 1984 .

[30]  G. Goodwin,et al.  Convergence properties of the Riccati difference equation in optimal filtering of nonstabilizable systems , 1984 .

[31]  Robert B. Litterman,et al.  Forecasting and Conditional Projection Using Realistic Prior Distributions , 1983 .

[32]  Charles H. Whiteman,et al.  Linear Rational Expectations Models: A User's Guide , 1983 .

[33]  Paul Van Dooren,et al.  Algorithm 590: DSUBSP and EXCHQZ: FORTRAN Subroutines for Computing Deflating Subspaces with Specified Spectrum , 1982, TOMS.

[34]  Finn E. Kydland,et al.  Time to Build and Aggregate Fluctuations , 1982 .

[35]  A. Kumar,et al.  Derivative computations for the log likelihood function , 1982 .

[36]  Marjorie Flavin,et al.  The Adjustment of Consumption to Changing Expectations About Future Income , 1981, Journal of Political Economy.

[37]  Robert C. Ward,et al.  Balancing the Generalized Eigenvalue Problem , 1981 .

[38]  J. D. Roberts,et al.  Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .

[39]  P. Dooren A Generalized Eigenvalue Approach for Solving Riccati Equations , 1980 .

[40]  C. Sims MACROECONOMICS AND REALITY , 1977 .

[41]  R. Hall Stochastic Implications of the Life Cycle-Permanent Income Hypothesis: Theory and Evidence , 1978, Journal of Political Economy.

[42]  A. Laub A schur method for solving algebraic Riccati equations , 1978, 1978 IEEE Conference on Decision and Control including the 17th Symposium on Adaptive Processes.

[43]  B. O. Anderson Second-order convergent algorithms for the steady-state Riccati equation , 1977, 1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications.

[44]  Lawrence J. Buntin Historical Statistics of the United States: Colonial Times to 1970 , 1976 .

[45]  G. W. Stewart,et al.  Algorithm 506: HQR3 and EXCHNG: Fortran Subroutines for Calculating and Ordering the Eigenvalues of a Real Upper Hessenberg Matrix [F2] , 1976, TOMS.

[46]  E. Denman,et al.  The matrix sign function and computations in systems , 1976 .

[47]  G. Stewart On the Sensitivity of the Eigenvalue Problem $Ax = \lambda Bx$ , 1972 .

[48]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[49]  B. Anderson,et al.  Iterative method of computing the limiting solution of the matrix Riccati differential equation , 1972 .

[50]  David Q. Mayne,et al.  “On the discrete time matrix Riccati equation of optimal control-a correction” , 1971 .

[51]  D. Mayne,et al.  On the discrete time matrix Riccati equation of optimal control , 1970 .

[52]  D. Vaughan A nonrecursive algebraic solution for the discrete Riccati equation , 1970 .

[53]  P. Graefe Linear stochastic systems , 1966 .

[54]  J. Potter Matrix Quadratic Solutions , 1966 .

[55]  A. MacFarlane An Eigenvector Solution of the Optimal Linear Regulator Problem , 1963 .

[56]  Agricultural Statistics , 1936, Nature.