VIBRATION ANALYSIS BY DISCRETE SINGULAR CONVOLUTION

This paper explores the utility of a discrete singular convolution algorithm for vibration analysis. A number of di!erent realizations of singular convolution kernels are selected to illustrate the present algorithm. Vibration analysis of strings, rods, beams, diatomic molecules, membranes, waveguides and thin plates are utilized to test numerical accuracy and speed of convergence of the present approach. Numerical experiments indicate that the discrete singular convolution is a simple and reliable algorithm for vibration analysis. ( 2001 Academic Press

[1]  Steven A. Orszag,et al.  Comparison of Pseudospectral and Spectral Approximation , 1972 .

[2]  C. Lanczos,et al.  Trigonometric Interpolation of Empirical and Analytical Functions , 1938 .

[3]  B. Nath Fundamentals of finite element methods for engineers. Textbook : 60F, Tables, Refs. THE ATHLONE PRESS, UNIV. LONDON, 1974, 272P , 1974 .

[4]  B. Fornberg On a Fourier method for the integration of hyperbolic equations , 1975 .

[5]  Guo-Wei Wei,et al.  Discrete singular convolution for the solution of the Fokker–Planck equation , 1999 .

[6]  Y. K. Cheung,et al.  FINITE STRIP METHOD IN STRUCTURAL ANALYSIS , 1976 .

[7]  Long Chen INTRODUCTION TO FINITE ELEMENT METHODS , 2003 .

[8]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[9]  G. Wei,et al.  A new algorithm for solving some mechanical problems , 2001 .

[10]  Guo-Wei Wei,et al.  Discrete singular convolution for the sine-Gordon equation , 2000 .

[11]  G. Wahba Optimal Convergence Properties of Variable Knot, Kernel, and Orthogonal Series Methods for Density Estimation. , 1975 .

[12]  R. Kronmal,et al.  The Estimation of Probability Densities and Cumulatives by Fourier Series Methods , 1968 .

[13]  L. Vázquez,et al.  Numerical solution of the sine-Gordon equation , 1986 .

[14]  B. B. Winter Rate of Strong Consistency of Two Nonparametric Density Estimators , 1975 .

[15]  S. Flügge,et al.  Practical Quantum Mechanics , 1976 .

[16]  G. Walter,et al.  Probability Density Estimation Using Delta Sequences , 1979 .