Mutual information-assisted adaptive variational quantum eigensolver

Adaptive construction of ansatz circuits offers a promising route towards applicable variational quantum eigensolvers on near-term quantum hardware. Those algorithms aim to build up optimal circuits for a certain problem and ansatz circuits are adaptively constructed by selecting and adding entanglers from a predefined pool. In this work, we propose a way to construct entangler pools with reduced size by leveraging classical algorithms. Our method uses mutual information between the qubits in classically approximated ground state to rank and screen the entanglers. The density matrix renormalization group method is employed for classical precomputation in this work. We corroborate our method numerically on small molecules. Our numerical experiments show that a reduced entangler pool with a small portion of the original entangler pool can achieve same numerical accuracy. We believe that our method paves a new way for adaptive construction of ansatz circuits for variational quantum algorithms.

[1]  J. D. Wong-Campos,et al.  Benchmarking an 11-qubit quantum computer , 2019, Nature Communications.

[2]  J. Gambetta,et al.  Tapering off qubits to simulate fermionic Hamiltonians , 2017, 1701.08213.

[3]  Travis S. Humble,et al.  Quantum supremacy using a programmable superconducting processor , 2019, Nature.

[4]  Peter V Coveney,et al.  A Comparison of the Bravyi–Kitaev and Jordan–Wigner Transformations for the Quantum Simulation of Quantum Chemistry , 2018, Journal of chemical theory and computation.

[5]  Teresa Tamayo-Mendoza,et al.  TEQUILA: a platform for rapid development of quantum algorithms , 2020, Quantum Science and Technology.

[6]  Ryan Babbush,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[7]  Matthias Troyer,et al.  ProjectQ: An Open Source Software Framework for Quantum Computing , 2016, ArXiv.

[8]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[9]  M. Troyer,et al.  Elucidating reaction mechanisms on quantum computers , 2016, Proceedings of the National Academy of Sciences.

[10]  E. Wigner,et al.  Über das Paulische Äquivalenzverbot , 1928 .

[11]  Alán Aspuru-Guzik,et al.  Quantum Chemistry in the Age of Quantum Computing. , 2018, Chemical reviews.

[12]  S. White,et al.  Measuring orbital interaction using quantum information theory , 2005, cond-mat/0508524.

[13]  S. Lloyd,et al.  Quantum Algorithm Providing Exponential Speed Increase for Finding Eigenvalues and Eigenvectors , 1998, quant-ph/9807070.

[14]  Alán Aspuru-Guzik,et al.  A variational eigenvalue solver on a photonic quantum processor , 2013, Nature Communications.

[15]  Scott N. Genin,et al.  Qubit Coupled Cluster Method: A Systematic Approach to Quantum Chemistry on a Quantum Computer. , 2018, Journal of chemical theory and computation.

[16]  Yudong Cao,et al.  OpenFermion: the electronic structure package for quantum computers , 2017, Quantum Science and Technology.

[17]  Alán Aspuru-Guzik,et al.  The theory of variational hybrid quantum-classical algorithms , 2015, 1509.04279.

[18]  Robert J. Harrison,et al.  MADNESS: A Multiresolution, Adaptive Numerical Environment for Scientific Simulation , 2015, SIAM J. Sci. Comput..

[19]  A. Kitaev,et al.  Fermionic Quantum Computation , 2000, quant-ph/0003137.

[20]  M. Head‐Gordon,et al.  Simulated Quantum Computation of Molecular Energies , 2005, Science.

[21]  D. Wales Energy Landscapes by David Wales , 2004 .

[22]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[23]  Harper R. Grimsley,et al.  Is the Trotterized UCCSD Ansatz Chemically Well-Defined? , 2019, Journal of chemical theory and computation.

[24]  J. Gambetta,et al.  Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets , 2017, Nature.

[25]  Alán Aspuru-Guzik,et al.  Quantum computational chemistry , 2018, Reviews of Modern Physics.

[26]  J. McClean,et al.  Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz , 2017, Quantum Science and Technology.

[27]  Markus Reiher,et al.  autoCAS: A Program for Fully Automated Multiconfigurational Calculations , 2019, J. Comput. Chem..

[28]  Artur F. Izmaylov,et al.  Iterative Qubit Coupled Cluster approach with efficient screening of generators. , 2019, Journal of chemical theory and computation.

[29]  Jakob S. Kottmann,et al.  Reducing Qubit Requirements while Maintaining Numerical Precision for the Variational Quantum Eigensolver: A Basis-Set-Free Approach. , 2020, The journal of physical chemistry letters.

[30]  Edward F. Valeev,et al.  Direct determination of optimal pair-natural orbitals in a real-space representation: The second-order Moller-Plesset energy. , 2020, The Journal of chemical physics.

[31]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[32]  Sandeep Sharma,et al.  The density matrix renormalization group in quantum chemistry. , 2011, Annual review of physical chemistry.

[33]  Anthony D. Castellano,et al.  Genuine 12-Qubit Entanglement on a Superconducting Quantum Processor. , 2018, Physical review letters.

[34]  J. Sólyom,et al.  Optimizing the density-matrix renormalization group method using quantum information entropy , 2003 .

[35]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[36]  Harper R. Grimsley,et al.  An adaptive variational algorithm for exact molecular simulations on a quantum computer , 2018, Nature Communications.

[37]  E. M. Stoudenmire,et al.  The ITensor Software Library for Tensor Network Calculations , 2020, SciPost Physics Codebases.

[38]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[39]  Sandeep Sharma,et al.  PySCF: the Python‐based simulations of chemistry framework , 2018 .

[40]  Qiming Sun,et al.  Libcint: An efficient general integral library for Gaussian basis functions , 2014, J. Comput. Chem..

[41]  Harper R. Grimsley,et al.  qubit-ADAPT-VQE: An adaptive algorithm for constructing hardware-efficient ansatze on a quantum processor , 2019, 1911.10205.

[42]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.