Overview of experiment design and comparison of models participating in phase 1 of the SPARC Quasi-Biennial Oscillation initiative (QBOi)

Abstract. The Stratosphere–troposphere Processes And their Role in Climate (SPARC) Quasi-Biennial Oscillation initiative (QBOi) aims to improve the fidelity of tropical stratospheric variability in general circulation and Earth system models by conducting coordinated numerical experiments and analysis. In the equatorial stratosphere, the QBO is the most conspicuous mode of variability. Five coordinated experiments have therefore been designed to (i) evaluate and compare the verisimilitude of modelled QBOs under present-day conditions, (ii) identify robustness (or alternatively the spread and uncertainty) in the simulated QBO response to commonly imposed changes in model climate forcings (e.g. a doubling of CO2 amounts), and (iii) examine model dependence of QBO predictability. This paper documents these experiments and the recommended output diagnostics. The rationale behind the experimental design and choice of diagnostics is presented. To facilitate scientific interpretation of the results in other planned QBOi studies, consistent descriptions of the models performing each experiment set are given, with those aspects particularly relevant for simulating the QBO tabulated for easy comparison.

[1]  P. Newman The 2018 UNEP/WMO Scientific Assessment of Ozone Depletion , 2019 .

[2]  Mohamed Zerroukat,et al.  The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations , 2011, Geoscientific Model Development.

[3]  N. McFarlane,et al.  Sensitivity of Climate Simulations to the Parameterization of Cumulus Convection in the Canadian Climate Centre General Circulation Model , 1995, Data, Models and Analysis.

[4]  E. Manzini,et al.  Impact of a Stochastic Nonorographic Gravity Wave Parameterization on the Stratospheric Dynamics of a General Circulation Model , 2018, Journal of Advances in Modeling Earth Systems.

[5]  R. Garcia On the Momentum Budget of the Quasi-Biennial Oscillation in the Whole Atmosphere Community Climate Model , 2017, Journal of the Atmospheric Sciences.

[6]  J. McCormack,et al.  Origin of the 2016 QBO Disruption and Its Relationship to Extreme El Niño Events , 2017 .

[7]  S. Pawson,et al.  Dynamics of the Disrupted 2015-16 Quasi-Biennial Oscillation. , 2017, Journal of climate.

[8]  Hannah M. Christensen,et al.  Climate SPHINX: evaluating the impact of resolution and stochastic physics parameterisations in the EC-Earth global climate model , 2017 .

[9]  Andrea Stenke,et al.  Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI) , 2017 .

[10]  N. Butchart,et al.  Report on the SPARC QBO Workshop: The QBO and its Global Influence - Past, Present and Future , 2017 .

[11]  Markus Gross,et al.  The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations , 2017 .

[12]  N. Butchart,et al.  Defining metrics of the Quasi-Biennial Oscillation in global climate models , 2016 .

[13]  Adam A. Scaife,et al.  Skilful predictions of the winter North Atlantic Oscillation one year ahead , 2016 .

[14]  B. Christiansen,et al.  Do strong warm ENSO events control the phase of the stratospheric QBO? , 2016 .

[15]  T. Dunkerton The quasi‐biennial oscillation of 2015–2016: Hiccup or death spiral? , 2016 .

[16]  Elisa Manzini,et al.  The Dynamics and Variability Model Intercomparison Project (DynVarMIP) for CMIP6: assessing the stratosphere–troposphere system , 2016 .

[17]  Adam A. Scaife,et al.  An unexpected disruption of the atmospheric quasi-biennial oscillation , 2016, Science.

[18]  S. Pawson,et al.  The anomalous change in the QBO in 2015–2016 , 2016 .

[19]  Craig S. Long,et al.  Introduction to the SPARC Reanalysis Intercomparison Project (S-RIP) and overview of the reanalysis systems , 2016 .

[20]  M. Kelley,et al.  Modeling the QBO—Improvements resulting from higher‐model vertical resolution , 2016, Journal of advances in modeling earth systems.

[21]  I. Moroz,et al.  Synchronisation of the equatorial QBO by the annual cycle in tropical upwelling in a warming climate , 2016 .

[22]  J. Scinocca,et al.  Simulating the QBO in an Atmospheric General Circulation Model: Sensitivity to Resolved and Parameterized Forcing , 2016 .

[23]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[24]  S. Vosper,et al.  Parameterized Gravity Wave Momentum Fluxes from Sources Related to Convection and Large-Scale Precipitation Processes in a Global Atmosphere Model , 2015 .

[25]  Hye-Yeong Chun,et al.  Momentum forcing of the quasi-biennial oscillation by equatorial waves in recent reanalyses , 2015 .

[26]  L. Oman,et al.  Modulation of Antarctic vortex composition by the quasi‐biennial oscillation , 2015 .

[27]  S. Eckermann,et al.  Generation of a Quasi-Biennial Oscillation in an NWP Model Using a Stochastic Gravity Wave Drag Parameterization , 2015 .

[28]  C. Jablonowski,et al.  Idealized Quasi-Biennial Oscillations in an Ensemble of Dry GCM Dynamical Cores , 2015 .

[29]  F. Lott,et al.  A parameterization of gravity waves emitted by fronts and jets , 2015 .

[30]  Y.‐H. Kim,et al.  Contributions of equatorial wave modes and parameterized gravity waves to the tropical QBO in HadGEM2 , 2015 .

[31]  Hiromasa Yoshimura,et al.  A Spectral Cumulus Parameterization Scheme Interpolating between Two Convective Updrafts with Semi-Lagrangian Calculation of Transport by Compensatory Subsidence , 2015 .

[32]  M. Giorgetta,et al.  The quasi-biennial oscillation in a warmer climate: sensitivity to different gravity wave parameterizations , 2015, Climate Dynamics.

[33]  C. Frantzidis,et al.  Response to Reviewers Reviewer #1 , 2010 .

[34]  G. Schmidt,et al.  The QBO in two GISS global climate models: 1. Generation of the QBO , 2014 .

[35]  N. Butchart The Brewer‐Dobson circulation , 2014 .

[36]  J. Bacmeister,et al.  On the simulation of the quasi‐biennial oscillation in the Community Atmosphere Model, version 5 , 2014 .

[37]  S. Denvil,et al.  Kelvin and Rossby‐gravity wave packets in the lower stratosphere of some high‐top CMIP5 models , 2014 .

[38]  Maria Athanassiadou,et al.  Predictability of the quasi‐biennial oscillation and its northern winter teleconnection on seasonal to decadal timescales , 2014 .

[39]  M. Alexander,et al.  A convection‐based gravity wave parameterization in a general circulation model: Implementation and improvements on the QBO , 2014 .

[40]  T. Shepherd,et al.  High‐latitude influence of the quasi‐biennial oscillation , 2014 .

[41]  Christopher Kadow,et al.  Improved forecast skill in the tropics in the new MiKlip decadal climate predictions , 2013 .

[42]  Daniel R. Marsh,et al.  Climate change from 1850 to 2005 simulated in CESM1(WACCM) , 2013 .

[43]  Kevin Hamilton,et al.  Tropical Cumulus Convection and Upward Propagating Waves in Middle Atmospheric Gcms , 2013 .

[44]  B. Stevens,et al.  Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the Coupled Model Intercomparison Project phase 5 , 2013 .

[45]  B. Stevens,et al.  Atmospheric component of the MPI‐M Earth System Model: ECHAM6 , 2013 .

[46]  F. Lott,et al.  A stochastic parameterization of the gravity waves due to convection and its impact on the equatorial stratosphere , 2013 .

[47]  A. Bushell,et al.  Impacts of introducing a convective gravity‐wave parameterization upon the QBO in the Met Office Unified Model , 2013 .

[48]  Y. Kawatani,et al.  Weakened stratospheric quasibiennial oscillation driven by increased tropical mean upwelling , 2013, Nature.

[49]  Reto Knutti,et al.  Climate model genealogy: Generation CMIP5 and how we got there , 2013 .

[50]  C. Timmreck,et al.  Response of the middle atmosphere to anthropogenic and natural forcings in the CMIP5 simulations with the Max Planck Institute Earth system model , 2013 .

[51]  T. Hinton,et al.  Stratospheric Variability in Twentieth-Century CMIP5 Simulations of the Met Office Climate Model: High Top versus Low Top , 2013 .

[52]  H. Tsujino,et al.  Basic performance of a new earth system model of the Meteorological Research Institute (MRI-ESM1) , 2013 .

[53]  S. Bony,et al.  LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection , 2013, Climate Dynamics.

[54]  Karl E. Taylor,et al.  An overview of CMIP5 and the experiment design , 2012 .

[55]  François Lott,et al.  A stochastic parameterization of non‐orographic gravity waves: Formalism and impact on the equatorial stratosphere , 2012 .

[56]  W. Müller,et al.  Stratosphere‐troposphere coupling at inter‐decadal time scales: Implications for the North Atlantic Ocean , 2012 .

[57]  H. Tsujino,et al.  A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3 —Model Description and Basic Performance— , 2012 .

[58]  Jeffrey L. Anderson,et al.  Implementation of new diffusion/filtering operators in the CAM-FV dynamical core , 2012, Int. J. High Perform. Comput. Appl..

[59]  Klaus Wyser,et al.  EC-Earth V2.2: description and validation of a new seamless earth system prediction model , 2012, Climate Dynamics.

[60]  S. Emori,et al.  MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments , 2011 .

[61]  C. Jones,et al.  The HadGEM2 family of Met Office Unified Model climate configurations , 2011 .

[62]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[63]  H. Chun,et al.  Momentum Flux Spectrum of Convective Gravity Waves. Part I: An Update of a Parameterization Using Mesoscale Simulations , 2011 .

[64]  Veronika Eyring,et al.  Multimodel climate and variability of the stratosphere , 2011 .

[65]  S. Watanabe,et al.  The Quasi-Biennial Oscillation in a Double CO2 Climate , 2011 .

[66]  S. Vosper,et al.  Stratospheric gravity waves revealed in NWP model forecasts , 2011 .

[67]  T. Takemura,et al.  Geoscientific Model Development MIROC-ESM 2010 : model description and basic results of CMIP 5-20 c 3 m experiments , 2011 .

[68]  Patrick Jöckel,et al.  Development cycle 2 of the Modular Earth Submodel System (MESSy2) , 2010 .

[69]  P. Bechtold,et al.  Improved Middle Atmosphere Climate and Forecasts in the ECMWF Model through a Nonorographic Gravity Wave Drag Parameterization , 2010 .

[70]  T. Hinton,et al.  Sensitivity of GCM tropical middle atmosphere variability and climate to ozone and parameterized gravity wave changes , 2010 .

[71]  T. Shepherd,et al.  Influence of the Quasi-Biennial Oscillation on the Extratropical Winter Stratosphere in an Atmospheric General Circulation Model and in Reanalysis Data , 2010 .

[72]  T. Dunkerton,et al.  The Roles of Equatorial Trapped Waves and Internal Inertia–Gravity Waves in Driving the Quasi-Biennial Oscillation. Part I: Zonal Mean Wave Forcing , 2010 .

[73]  R. Garcia,et al.  Toward a Physically Based Gravity Wave Source Parameterization in a General Circulation Model , 2010 .

[74]  David A. Plummer,et al.  Technical Note: The CCCma third generation AGCM and its extension into the middle atmosphere , 2008 .

[75]  Martin Köhler,et al.  Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time‐scales , 2008 .

[76]  Lennart Bengtsson,et al.  Climatology and Forcing of the Quasi-Biennial Oscillation in the MAECHAM5 Model , 2006 .

[77]  F. Hourdin,et al.  The stratospheric version of LMDz: dynamical climatologies, arctic oscillation, and impact on the surface climate , 2005 .

[78]  M. Deushi,et al.  Partitioning between resolved wave forcing and unresolved gravity wave forcing to the quasi‐biennial oscillation as revealed with a coupled chemistry‐climate model , 2005 .

[79]  Rolando R. Garcia,et al.  Implementation of a gravity wave source spectrum parameterization dependent on the properties of convection in the Whole Atmosphere Community Climate Model (WACCM) , 2005 .

[80]  Patrick Jöckel,et al.  Atmospheric Chemistry and Physics Technical Note: the Modular Earth Submodel System (messy) – a New Approach towards Earth System Modeling , 2022 .

[81]  Christopher S. Bretherton,et al.  A New Parameterization for Shallow Cumulus Convection and Its Application to Marine Subtropical Cloud-Topped Boundary Layers. Part I: Description and 1D Results , 2004 .

[82]  Luca Bonaventura,et al.  The atmospheric general circulation model ECHAM 5. PART I: Model description , 2003 .

[83]  Adam A. Scaife,et al.  Quasi‐biennial oscillation in ozone in a coupled chemistry‐climate model , 2003 .

[84]  John F. Scinocca,et al.  An Accurate Spectral Nonorographic Gravity Wave Drag Parameterization for General Circulation Models , 2003 .

[85]  Richard Swinbank,et al.  Impact of a Spectral Gravity Wave Parameterization on the Stratosphere in the Met Office Unified Model , 2002 .

[86]  E. Roeckner,et al.  Forcing of the quasi‐biennial oscillation from a broad spectrum of atmospheric waves , 2002 .

[87]  R. Hemler,et al.  Spontaneous Stratospheric QBO-like Oscillations Simulated by the GFDL SKYHI General Circulation Model , 2001 .

[88]  Toru Nozawa,et al.  Importance of Cumulus Parameterization for Precipitation Simulation over East Asia in June , 2001 .

[89]  M. McIntyre,et al.  An Ultrasimple Spectral Parameterization for Nonorographic Gravity Waves , 2001 .

[90]  Kevin Hamilton,et al.  The quasi‐biennial oscillation , 2001 .

[91]  Adam A. Scaife,et al.  Realistic quasi‐biennial oscillations in a simulation of the global climate , 2000 .

[92]  T. Dunkerton,et al.  A spectral parameterization of mean-flow forcing due to breaking gravity waves , 1999 .

[93]  M. McIntyre,et al.  Toward an ultra-simple spectral gravity wave parameterization for general circulation models , 1999 .

[94]  C. O. Hines,et al.  Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 2: Broad and quasi monochromatic spectra, and implementation , 1997 .

[95]  C. Hines,et al.  Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation , 1997 .

[96]  M. McIntyre,et al.  On the Propagation and Dissipation of Gravity Wave Spectra through a Realistic Middle Atmosphere , 1996 .

[97]  Masaaki Takahashi,et al.  Simulation of the stratospheric Quasi-Biennial Oscillation using a general circulation model , 1996 .

[98]  K. Emanuel A Scheme for Representing Cumulus Convection in Large-Scale Models , 1991 .

[99]  P. Rowntree,et al.  A Mass Flux Convection Scheme with Representation of Cloud Ensemble Characteristics and Stability-Dependent Closure , 1990 .

[100]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[101]  G. Mellor,et al.  Development of a turbulence closure model for geophysical fluid problems , 1982 .

[102]  R. Lindzen Turbulence and stress owing to gravity wave and tidal breakdown , 1981 .

[103]  C. Leith Atmospheric Predictability and Two-Dimensional Turbulence , 1971 .