Cubic shells

Hinge-based bending models are widely used in the physically-based animation of cloth, thin plates and shells. We propose a hinge-based model that is simpler to implement, more efficient to compute, and offers a greater number of effective material parameters than existing models. Our formulation builds on two mathematical observations: (a) the bending energy of curved flexible surfaces can be expressed as a cubic polynomial if the surface does not stretch; (b) a general class of anisotropic materials---those that are orthotropic---is captured by appropriate choice of a single stiffness per hinge. Our contribution impacts a general range of surface animation applications, from isotropic cloth and thin plates to orthotropic fracturing thin shells.

[1]  Nadia Magnenat-Thalmann,et al.  Simple linear bending stiffness in particle systems , 2006, SCA '06.

[2]  Eitan Grinspun,et al.  Discrete quadratic curvature energies , 2006, Comput. Aided Geom. Des..

[3]  Ronald Fedkiw,et al.  A virtual node algorithm for changing mesh topology during simulation , 2004, ACM Trans. Graph..

[4]  James F. O'Brien,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH '02.

[5]  Konrad Polthier,et al.  Anisotropic Filtering of Non‐Linear Surface Features , 2004, Comput. Graph. Forum.

[6]  David E. Breen,et al.  Predicting the drape of woven cloth using interacting particles , 1994, SIGGRAPH.

[7]  B. Thomaszewski,et al.  Bending Models for Thin Flexible Objects , 2006 .

[8]  Eitan Grinspun,et al.  Computing discrete shape operators on general meshes , 2006, Comput. Graph. Forum.

[9]  Ronald Fedkiw,et al.  Simulation of clothing with folds and wrinkles , 2003, SCA '03.

[10]  Kwang-Jin Choi,et al.  Extending the Immediate Buckling Model to Triangular Meshes for Simulating Complex Clothes , 2003, Eurographics.

[11]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[12]  Eitan Grinspun,et al.  A quadratic bending model for inextensible surfaces , 2006, SGP '06.

[13]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[14]  Eitan Grinspun,et al.  A Discrete Model for Inelastic Deformation of Thin Shells , 2004 .

[15]  Michael Hauth,et al.  Visual simulation of deformable models , 2004 .

[16]  Demetri Terzopoulos,et al.  Modeling inelastic deformation: viscolelasticity, plasticity, fracture , 1988, SIGGRAPH.

[17]  V. Sidabraite,et al.  A preliminary study for evaluation of skirt asymmetric drape , 2002 .

[18]  川端 季雄,et al.  The standardization and analysis of hand evaluation. , 1975 .

[19]  Mathieu Desbrun,et al.  Discrete shells , 2003, SCA '03.

[20]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[21]  J. Z. Zhu,et al.  The finite element method , 1977 .

[22]  J. F. Doyle Thin Plates and Shells , 2020, Encyclopedia of Continuum Mechanics.

[23]  I. Holopainen Riemannian Geometry , 1927, Nature.

[24]  Jessica K. Hodgins,et al.  Graphical modeling and animation of brittle fracture , 1999, SIGGRAPH.

[25]  Benedetta Morini,et al.  Convergence behaviour of inexact Newton methods , 1999, Math. Comput..