Imaging spectroscopic ellipsometry of MoS2

Micromechanically exfoliated mono- and multilayers of molybdenum disulfide (MoS2) are investigated by spectroscopic imaging ellipsometry. In combination with knife edge illumination, MoS2 flakes can be detected and classified on arbitrary flat and also transparent substrates with a lateral resolution down to 1-2 µm. The complex dielectric functions from mono- and trilayer MoS2 are presented. They are extracted from a multilayer model to fit the measured ellipsometric angles employing an anisotropic and an isotropic fit approach. We find that the energies of the critical points of the optical constants can be treated to be independent of the utilized model, whereas the magnitude of the optical constants varies with the used model. The anisotropic model suggests a maximum absorbance for a MoS2 sheet supported by sapphire of about 14% for monolayer and of 10% for trilayer MoS2. Furthermore, the lateral homogeneity of the complex dielectric function for monolayer MoS2 is investigated with a spatial resolution of 2 µm. Only minor fluctuations are observed. No evidence for strain, for a significant amount of disorder or lattice defects can be found in the wrinkle-free regions of the MoS2 monolayer from complementary µ-Raman spectroscopy measurements. We assume that the minor lateral variation in the optical constants are caused by lateral modification in the van der Waals interaction presumably caused by the preparation using micromechanical exfoliation and viscoelastic stamping.

[1]  P. Drude,et al.  Ueber Oberflächenschichten. II. Theil , 1889 .

[2]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[3]  J. Knights,et al.  Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination , 1972 .

[4]  D. W. Berreman,et al.  Optics in Stratified and Anisotropic Media: 4×4-Matrix Formulation , 1972 .

[5]  R. Azzam,et al.  Ellipsometry and polarized light : North Holland, Amsterdam, 1987 (ISBN 0-444-87016-4). xvii + 539 pp. Price Dfl. 75.00. , 1987 .

[6]  John R Abelson,et al.  Spectroscopic ellipsometry of thin films on transparent substrates: A formalism for data interpretation , 1995 .

[7]  E. Irene,et al.  Fundamentals and applications of spectroscopic ellipsometry , 2002 .

[8]  Visibility study of graphene multilayer structures , 2008, 0806.1306.

[9]  R. Synowicki,et al.  Suppression of backside reflections from transparent substrates , 2008 .

[10]  Rodney S. Ruoff,et al.  Characterization of Thermally Reduced Graphene Oxide by Imaging Ellipsometry , 2008 .

[11]  C. Grigoropoulos,et al.  Thermal sintering of solution-deposited nanoparticle silver ink films characterized by spectroscopic ellipsometry , 2008 .

[12]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[13]  W. Wegscheider,et al.  Imaging ellipsometry of graphene , 2010, 1008.3206.

[14]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[15]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[16]  W. Hansen,et al.  Enhancing the visibility of graphene on GaAs , 2011 .

[17]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[18]  B. Radisavljevic,et al.  Visibility of dichalcogenide nanolayers , 2010, Nanotechnology.

[19]  D. Weiss,et al.  Low‐temperature photoluminescence of oxide‐covered single‐layer MoS2 , 2011, 1112.3747.

[20]  B. Chakraborty,et al.  Symmetry-dependent phonon renormalization in monolayer MoS2transistor , 2012, Physical Review B.

[21]  Xiaofeng Qian,et al.  Strain-engineered artificial atom as a broad-spectrum solar energy funnel , 2012, Nature Photonics.

[22]  R. Gajić,et al.  Spectroscopic imaging ellipsometry and Fano resonance modeling of graphene , 2012 .

[23]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[24]  Jed I. Ziegler,et al.  Electrical control of optical properties of monolayer MoS2 , 2012, 1211.0341.

[25]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[26]  E. Johnston-Halperin,et al.  Progress, challenges, and opportunities in two-dimensional materials beyond graphene. , 2013, ACS nano.

[27]  O. Kolosov,et al.  Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates , 2013, Scientific Reports.

[28]  J. Shan,et al.  Tightly bound trions in monolayer MoS2. , 2012, Nature materials.

[29]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[30]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[31]  Marco Bernardi,et al.  Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. , 2013, Nano letters.

[32]  I. Appelbaum,et al.  Electrons and holes in phosphorene , 2014, 1408.0770.

[33]  Giuseppe Iannaccone,et al.  Electronics based on two-dimensional materials. , 2014, Nature nanotechnology.

[34]  Thomas F. Jaramillo,et al.  Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials , 2014 .

[35]  G. Duesberg,et al.  Investigation of the optical properties of MoS2 thin films using spectroscopic ellipsometry , 2014 .

[36]  Kan Wang,et al.  Lattice strain effects on the optical properties of MoS2 nanosheets , 2014, Scientific Reports.

[37]  Sung Kim,et al.  Optical properties of large-area ultrathin MoS2 films: Evolution from a single layer to multilayers , 2014 .

[38]  Yu‐Chuan Lin,et al.  Rapid, non-destructive evaluation of ultrathin WSe2 using spectroscopic ellipsometry , 2014 .

[39]  Theodore B. Norris,et al.  Extracting the complex optical conductivity of mono- and bilayer graphene by ellipsometry , 2014 .

[40]  Wang Yao,et al.  Spin and pseudospins in layered transition metal dichalcogenides , 2014, Nature Physics.

[41]  Rajeev Kumar,et al.  Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides , 2014, Nature Communications.

[42]  G. Burkard,et al.  k·p theory for two-dimensional transition metal dichalcogenide semiconductors , 2014, 1410.6666.

[43]  Oleg Kolosov,et al.  Structural, optical and electrostatic properties of single and few-layers MoS2: effect of substrate , 2015 .

[44]  G. Steele,et al.  Optical spectroscopy of interlayer coupling in artificially stacked MoS2 layers , 2015, 1509.08364.

[45]  David E. Aspnes,et al.  Exciton-dominated Dielectric Function of Atomically Thin MoS2 Films , 2015, Scientific Reports.

[46]  L. Dai,et al.  Measuring the Refractive Index of Highly Crystalline Monolayer MoS2 with High Confidence , 2015, Scientific Reports.

[47]  Madan Dubey,et al.  Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids , 2015 .

[48]  David Perez de Lara,et al.  Enhanced Visibility of MoS2, MoSe2, WSe2 and Black Phosphorus: Making Optical Identification of 2D Semiconductors Easier , 2015 .

[49]  Fengnian Xia,et al.  Recent Advances in Two-Dimensional Materials beyond Graphene. , 2015, ACS nano.

[50]  J. Garrido,et al.  Photocatalytic Stability of Single- and Few-Layer MoS₂. , 2015, ACS nano.

[51]  C. D. de Matos,et al.  Making graphene visible on transparent dielectric substrates: Brewster angle imaging , 2015 .

[52]  M. Pumera,et al.  Electrochemistry of Nanostructured Layered Transition-Metal Dichalcogenides. , 2015, Chemical reviews.

[53]  A. Holleitner,et al.  Photogating of mono- and few-layer MoS2 , 2015, 1503.00568.

[54]  Jorge Quereda,et al.  Spatially resolved optical absorption spectroscopy of single- and few-layer MoS₂ by hyperspectral imaging. , 2015, Nanotechnology.