An Efficient Implementation of the D-Homomorphism for Generation of de Bruijn Sequences
暂无分享,去创建一个
Iickho Song | Yun Hee Kim | Taejoo Chang | Bongjoo Park | I. Song | Y. Kim | Taejoo Chang | Bongjoo Park
[1] Iickho Song,et al. Cross-Joins in de Bruijn Sequences and Maximum Length Linear Sequences^* , 1993 .
[2] Kenneth G. Paterson,et al. A method for constructing decodable de Bruijn sequences , 1996, IEEE Trans. Inf. Theory.
[3] Kenneth G. Paterson,et al. Near optimal single-track Gray codes , 1996, IEEE Trans. Inf. Theory.
[4] Fred S. Annexstein. Generating De Bruijn Sequences: An Efficient Implementation , 1997, IEEE Trans. Computers.
[5] de Ng Dick Bruijn. A combinatorial problem , 1946 .
[6] Richard A. Games,et al. On the Complexities of de Bruijn Sequences , 1982, J. Comb. Theory, Ser. A.
[7] Tor Helleseth,et al. The number of cross-join pairs in maximum length linear sequences , 1991, IEEE Trans. Inf. Theory.
[8] Abraham Lempel,et al. Cryptology in Transition , 1979, CSUR.
[9] Tuvi Etzion. The depth distribution-a new characterization for linear codes , 1997, IEEE Trans. Inf. Theory.
[10] H. Fredricksen. A Survey of Full Length Nonlinear Shift Register Cycle Algorithms , 1982 .
[11] Abraham Lempel,et al. On a Homomorphism of the de Bruijn Graph and its Applications to the Design of Feedback Shift Registers , 1970, IEEE Transactions on Computers.