A high-rate long-life Li4Ti5O12/Li[Ni0.45Co0.1Mn1.45]O4 lithium-ion battery.

[1]  Dong‐Won Kim,et al.  High Performance Lithium Polymer Batteries assembled with Composite Gel Polymer Electrolytes , 2012 .

[2]  최형연,et al.  전기자동차용 리튬폴리머 배터리의 용접특성 및 모델링 , 2012 .

[3]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[4]  K. Amine,et al.  Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries , 2011 .

[5]  Tsutomu Ohzuku,et al.  Effect of Primary Particle Size upon Polarization and Cycling Stability of 5-V Lithium Insertion Material of Li [ Ni1 ∕ 2Mn3 ∕ 2 ] O4 , 2011 .

[6]  Bruno Scrosati,et al.  An advanced lithium ion battery based on high performance electrode materials. , 2011, Journal of the American Chemical Society.

[7]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[8]  Ashok K. Vijh,et al.  Improved electrolytes for Li-ion batteries: Mixtures of ionic liquid and organic electrolyte with enhanced safety and electrochemical performance , 2010 .

[9]  Jiayan Luo,et al.  General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation , 2010 .

[10]  Hun‐Gi Jung,et al.  Mesoporous Anatase TiO2 with High Surface Area and Controllable Pore Size by F−-Ion Doping: Applications for High-Power Li-Ion Battery Anode , 2009 .

[11]  Hun‐Gi Jung,et al.  Mesoporous TiO2 nano networks: Anode for high power lithium battery applications , 2009 .

[12]  Yang-Kook Sun,et al.  Effects of Co doping on Li[Ni0.5CoxMn1.5−x]O4 spinel materials for 5 V lithium secondary batteries via Co-precipitation , 2009 .

[13]  Thomas H. Bradley,et al.  Design, demonstrations and sustainability impact assessments for plug-in hybrid electric vehicles , 2009 .

[14]  R. Yamato,et al.  Three-volt Lithium-ion Battery Consisting of Li[Ni1/2Mn3/2]O4 and Li[Li1/3Ti5/3]O4: Improvement of Positive-electrode Material for Long-life Medium-power Applications , 2008 .

[15]  Yang-Kook Sun,et al.  On the Safety of the Li4Ti5O12 ∕ LiMn2O4 Lithium-Ion Battery System , 2007 .

[16]  Haoshen Zhou,et al.  Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode , 2007 .

[17]  Changyin Jiang,et al.  High-density spherical Li4Ti5O12/C anode material with good rate capability for lithium ion batteries , 2007 .

[18]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[19]  M. Wohlfahrt‐Mehrens,et al.  A Safe, Low-Cost, and Sustainable Lithium-Ion Polymer Battery , 2004 .

[20]  T. Ohzuku,et al.  Topotactic Two-Phase Reactions of Li [ Ni1 / 2Mn3 / 2 ] O 4 ( P4332 ) in Nonaqueous Lithium Cells , 2004 .

[21]  T. Ohzuku,et al.  Three-volt lithium-ion battery with Li[Ni1/2Mn3/2]O4 and the zero-strain insertion material of Li[Li1/3Ti5/3]O4 , 2003 .

[22]  T. Matsushima,et al.  Preparation of particulate Li4Ti5O12 having excellent characteristics as an electrode active material for power storage cells , 2003 .

[23]  B. Scrosati,et al.  High-Resolution In-Situ Structural Measurements of the Li4/3Ti5/3O4 “Zero-Strain” Insertion Material , 2002 .

[24]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[25]  Tsutomu Ohzuku,et al.  Zero‐Strain Insertion Material of Li [ Li1 / 3Ti5 / 3 ] O 4 for Rechargeable Lithium Cells , 1995 .

[26]  Jeff Dahn,et al.  Structure and electrochemistry of the spinel oxides LiTi2O4 and Li43Ti53O4 , 1989 .

[27]  A. H. Thompson,et al.  Electrochemical Potential Spectroscopy: A New Electrochemical Measurement , 1979 .

[28]  Keld West,et al.  Electrochemical Potential Spectroscopy: A New Electrochemical Measurement , 1979 .