On two-dimensional classical and Hermite sampling

We investigate some modifications of the two-dimensional sampling series with a Gaussian function for wider classes of bandlimited functions including unbounded entire functions on R and analytic functions on a bivariate strip. The first modification is given for the twodimensional version of the Whittaker-Kotelnikov-Shannon sampling (classical sampling) and the second is given for two-dimensional sampling involving values of all partial derivatives of order α ≤ 2 (Hermite sampling). These modifications improve the convergence rate of classical and Hermite sampling which will be of exponential type. Numerical examples are given to illustrate the advantages of the new method. AMS(2010): 94A20, 41A80, 41A25, 65L70

[1]  Li Yuewu Multidimensional Sampling Theorem of Hermite Type and Estimates for Aliasing Error on Sobolev Classes , 2006 .

[2]  D. S. Mitrinovic,et al.  The Cauchy Method of Residues: Theory and Applications , 1984 .

[3]  E. Parzen A SIMPLE PROOF AND SOME EXTENSIONS OF THE SAMPLING THEOREM , 1956 .

[4]  F. Gensun,et al.  On truncation error bound for multidimensional sampling expansion laplace transform , 2004 .

[5]  Zhanjie Song,et al.  Truncation and aliasing errors for Whittaker-Kotelnikov-Shannon sampling expansion , 2012 .

[6]  W. D. Montgomery K-order Sampling of N-dimensional Band-limited Functions† , 1965 .

[7]  A. Zayed Advances in Shannon's Sampling Theory , 1993 .

[8]  L. Ahlfors Complex Analysis , 1979 .

[9]  Wu,et al.  Reconstruction of Non-Bandlimited Functions by Multidimensional Sampling Theorem of Hermite Type , 2009 .

[10]  M. Nikolskii,et al.  Approximation of Functions of Several Variables and Embedding Theorems , 1971 .

[11]  Mahmoud H. Annaby,et al.  A sinc-Gaussian technique for computing eigenvalues of second-order linear pencils , 2013 .

[12]  F. V. Atkinson,et al.  Multiparameter eigenvalue problems , 1972 .

[13]  Peixin Ye Error Bounds for Multi-dimensional Whittaker-Shannon Sampling Expansion , 2011, 2011 International Conference on Multimedia and Signal Processing.

[14]  R. P. Gosselin On the L p Theory of Cardinal Series , 1963 .

[15]  Kazuo Murota,et al.  Complex-analytic approach to the sinc-Gauss sampling formula , 2006 .

[16]  Reese T. Prosser A multidimensional sampling theorem , 1966 .

[17]  Ralph P. Boas,et al.  OF ENTIRE FUNCTIONS , 2016 .

[18]  Jürgen Prestin,et al.  A Modification of Hermite Sampling with a Gaussian Multiplier , 2015 .

[19]  J. Wang MULTIDIMENSIONAL SAMPLING THEOREM AND ESTIMATE OF ALIASING ERROR , 1996 .

[20]  J. R. Higgins Sampling theory in Fourier and signal analysis : foundations , 1996 .

[21]  L. Ahlfors,et al.  Complex Analysis Mcgraw Hill , 2014 .

[22]  F. Atkinson,et al.  Multiparameter Eigenvalue Problems: Sturm-Liouville Theory , 2010 .

[23]  David Middleton,et al.  Sampling and Reconstruction of Wave-Number-Limited Functions in N-Dimensional Euclidean Spaces , 1962, Inf. Control..

[24]  Liwen Qian,et al.  Localized sampling in the presence of noise , 2006, Appl. Math. Lett..

[25]  Sampling and aliasing for functions band-limited to a thin shell , 1991 .

[26]  Gerhard Schmeisser,et al.  Sinc Approximation with a Gaussian Multiplier , 2007 .

[27]  M. H. Taibleson,et al.  Review: S. M. Nikol′skiĭ, Approximation of functions of several variables and imbedding theorems , 1977 .

[28]  Jovan D. Kečkić,et al.  The Cauchy Method of Residues , 1984 .

[29]  Liwen Qian On the regularized Whittaker-Kotel'nikov-Shannon sampling formula , 2002 .

[30]  Paul L. Butzer,et al.  Fourier analysis and approximation , 1971 .