Distinct genetic pathways define pre-malignant versus compensatory clonal hematopoiesis in Shwachman-Diamond syndrome

[1]  F. Dimaio,et al.  Efficient consideration of coordinated water molecules improves computational protein-protein and protein-ligand docking discrimination , 2020, PLoS Comput. Biol..

[2]  Ryan L. Collins,et al.  The mutational constraint spectrum quantified from variation in 141,456 humans , 2020, Nature.

[3]  M. Norkin,et al.  Clinical features and outcomes of patients with Shwachman-Diamond syndrome and myelodysplastic syndrome or acute myeloid leukaemia: a multicentre, retrospective, cohort study. , 2019, The Lancet. Haematology.

[4]  Benjamin L. Ebert,et al.  Implications of TP53 allelic state for genome stability, clinical presentation and outcomes in myelodysplastic syndromes , 2019, Nature Medicine.

[5]  Donna Neuberg,et al.  A dominant-negative effect drives selection of TP53 missense mutations in myeloid malignancies , 2019, Science.

[6]  F. Dimaio,et al.  Efficient consideration of coordinated water molecules improves computational protein-protein and protein-ligand docking , 2019, bioRxiv.

[7]  F. Camargo,et al.  Somatic Mutations Reveal Lineage Relationships and Age-Related Mutagenesis in Human Hematopoiesis , 2018, Cell reports.

[8]  K. Myers,et al.  Diagnosis, Treatment, and Molecular Pathology of Shwachman-Diamond Syndrome. , 2018, Hematology/oncology clinics of North America.

[9]  Markus Heinonen,et al.  Flex ddG: Rosetta ensemble-based estimation of changes in protein-protein binding affinity upon mutation , 2017, bioRxiv.

[10]  Christopher A. Miller,et al.  Somatic mutations and clonal hematopoiesis in congenital neutropenia. , 2018, Blood.

[11]  A. Warren Molecular basis of the human ribosomopathy Shwachman-Diamond syndrome , 2017, Advances in biological regulation.

[12]  Markus Heinonen,et al.  Flex ddG: Rosetta ensemble-based estimation of changes in protein-protein binding affinity upon mutation , 2017, bioRxiv.

[13]  A. Schambach,et al.  An optimized lentiviral vector system for conditional RNAi and efficient cloning of microRNA embedded short hairpin RNA libraries. , 2017, Biomaterials.

[14]  A. Shimamura,et al.  Germline Genetic Predisposition to Hematologic Malignancy. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[15]  D. Neuberg,et al.  Prognostic Mutations in Myelodysplastic Syndrome after Stem‐Cell Transplantation , 2017, The New England journal of medicine.

[16]  Nicola D. Roberts,et al.  Genomic Classification and Prognosis in Acute Myeloid Leukemia. , 2016, The New England journal of medicine.

[17]  Mario Cazzola,et al.  The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. , 2016, Blood.

[18]  Itay Mayrose,et al.  ConSurf 2016: an improved methodology to estimate and visualize evolutionary conservation in macromolecules , 2016, Nucleic Acids Res..

[19]  Li Jin,et al.  Mechanism of eIF6 release from the nascent 60S ribosomal subunit , 2015, Nature Structural &Molecular Biology.

[20]  Matthew C. Canver,et al.  miRNA-embedded shRNAs for Lineage-specific BCL11A Knockdown and Hemoglobin F Induction. , 2015, Molecular therapy : the journal of the American Society of Gene Therapy.

[21]  D. Neuberg,et al.  Acute myeloid leukemia ontogeny is defined by distinct somatic mutations. , 2015, Blood.

[22]  M. McCarthy,et al.  Age-related clonal hematopoiesis associated with adverse outcomes. , 2014, The New England journal of medicine.

[23]  S. Gabriel,et al.  Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. , 2014, The New England journal of medicine.

[24]  S. Volarevic,et al.  Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis. , 2014, Biochimica et biophysica acta.

[25]  S. Carter,et al.  Clonal evolution in hematological malignancies and therapeutic implications , 2014, Leukemia.

[26]  David Baker,et al.  High-resolution comparative modeling with RosettaCM. , 2013, Structure.

[27]  David T. W. Jones,et al.  Signatures of mutational processes in human cancer , 2013, Nature.

[28]  J. Stockman,et al.  Defective ribosome assembly in Shwachman-Diamond syndrome , 2013 .

[29]  Kenny Q. Ye,et al.  An integrated map of genetic variation from 1,092 human genomes , 2012, Nature.

[30]  Robert Gentleman,et al.  Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer , 2012, Nature Genetics.

[31]  T. Leblanc,et al.  Classification of and risk factors for hematologic complications in a French national cohort of 102 patients with Shwachman-Diamond syndrome , 2012, Haematologica.

[32]  J. Rommens,et al.  Deficiency of Sbds in the mouse pancreas leads to features of Shwachman-Diamond syndrome, with loss of zymogen granules. , 2012, Gastroenterology.

[33]  G. Montalbano,et al.  Deletion of chromosome 20 in bone marrow of patients with Shwachman‐Diamond syndrome, loss of the EIF6 gene and benign prognosis , 2012, British journal of haematology.

[34]  A. McKenna,et al.  Absolute quantification of somatic DNA alterations in human cancer , 2012, Nature Biotechnology.

[35]  O. Delaneau,et al.  A linear complexity phasing method for thousands of genomes , 2011, Nature Methods.

[36]  J. Rommens,et al.  Draft consensus guidelines for diagnosis and treatment of Shwachman‐Diamond syndrome , 2011, Annals of the New York Academy of Sciences.

[37]  R. Kay,et al.  Defective ribosome assembly in Shwachman-Diamond syndrome. , 2011, Blood.

[38]  Thomas M Green,et al.  A public genome-scale lentiviral expression library of human ORFs , 2011, Nature Methods.

[39]  S. Campaner,et al.  Impairment of cytoplasmic eIF6 activity restricts lymphomagenesis and tumor progression without affecting normal growth. , 2011, Cancer cell.

[40]  M. DePristo,et al.  A framework for variation discovery and genotyping using next-generation DNA sequencing data , 2011, Nature Genetics.

[41]  D. Baker,et al.  Alternate states of proteins revealed by detailed energy landscape mapping. , 2011, Journal of molecular biology.

[42]  S. Gallo,et al.  Tagging of functional ribosomes in living cells by HaloTag® technology , 2011, In Vitro Cellular & Developmental Biology - Animal.

[43]  M. DePristo,et al.  The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. , 2010, Genome research.

[44]  B. Ebert,et al.  Ribosomopathies: human disorders of ribosome dysfunction. , 2010, Blood.

[45]  M. Topf,et al.  Mechanism of eIF6-mediated Inhibition of Ribosomal Subunit Joining* , 2010, The Journal of Biological Chemistry.

[46]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[47]  M. Stratton,et al.  The cancer genome , 2009, Nature.

[48]  Oliver F. Lange,et al.  Structure prediction for CASP8 with all‐atom refinement using Rosetta , 2009, Proteins.

[49]  S A Forbes,et al.  The Catalogue of Somatic Mutations in Cancer (COSMIC) , 2008, Current protocols in human genetics.

[50]  Akiko Shimamura,et al.  Mitotic spindle destabilization and genomic instability in Shwachman-Diamond syndrome. , 2008, The Journal of clinical investigation.

[51]  Akiko Shimamura,et al.  The human Shwachman-Diamond syndrome protein, SBDS, associates with ribosomal RNA. , 2007, Blood.

[52]  Michael Costanzo,et al.  The Shwachman-Bodian-Diamond syndrome protein mediates translational activation of ribosomes in yeast , 2007, Nature Genetics.

[53]  T. Tsuruta,et al.  Myeloid lineage‐selective growth of revertant cells in Fanconi anaemia , 2006, British journal of haematology.

[54]  R. Leary,et al.  The Shwachman-Diamond SBDS protein localizes to the nucleolus. , 2005, Blood.

[55]  C. Gorrini,et al.  Release of eIF6 (p27BBP) from the 60S subunit allows 80S ribosome assembly , 2003, Nature.

[56]  Johanna M. Rommens,et al.  Mutations in SBDS are associated with Shwachman–Diamond syndrome , 2003, Nature Genetics.

[57]  D. Malkin,et al.  Clonal evolution in marrows of patients with Shwachman-Diamond syndrome: a prospective 5-year follow-up study. , 2002, Experimental Hematology.

[58]  B. Alter,et al.  p53 protein overexpression in bone marrow biopsies of patients with Shwachman-Diamond syndrome has a prevalence similar to that of patients with refractory anemia. , 2002, Archives of pathology & laboratory medicine.

[59]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[60]  M. Freedman,et al.  Shwachman-Diamond syndrome marrow cells show abnormally increased apoptosis mediated through the Fas pathway. , 2001, Blood.

[61]  J. Wagner,et al.  Somatic mosaicism in Fanconi anemia: Evidence of genotypic reversion in lymphohematopoietic stem cells , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Stephen K. Burley,et al.  Crystal structures of ribosome anti-association factor IF6 , 2000, Nature Structural Biology.

[63]  C. Mathew,et al.  Somatic Mosaicism in Fanconi Anemia: Molecular Basis and Clinical Significance , 1997, European journal of human genetics : EJHG.

[64]  H. Alaranta,et al.  A prospective 5-year follow-up study of 276 patients hospitalized because of suspected lumbar disc herniation. , 1989, International disability studies.

[65]  Thomas D. Schmittgen,et al.  Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2 2 DD C T Method , 2022 .