Fast linear algebra is stable
暂无分享,去创建一个
[1] V. Strassen. Gaussian elimination is not optimal , 1969 .
[2] K. Hadeler. Submultiplikative Normen auf Algebren , 1969 .
[3] R. Brent. Algorithms for matrix multiplication , 1970 .
[4] Allan Borodin,et al. The computational complexity of algebraic and numeric problems , 1975, Elsevier computer science library.
[5] D. Heller. A Survey of Parallel Algorithms in Numerical Linear Algebra. , 1978 .
[6] J. Varah. On the Separation of Two Matrices , 1979 .
[7] G. Stewart. The Efficient Generation of Random Orthogonal Matrices with an Application to Condition Estimators , 1980 .
[8] J. D. Roberts,et al. Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .
[9] Dario Bini,et al. Stability of fast algorithms for matrix multiplication , 1980 .
[10] R. Muirhead. Aspects of Multivariate Statistical Theory , 1982, Wiley Series in Probability and Statistics.
[11] Christian H. Bischof,et al. The WY representation for products of householder matrices , 1985, PPSC.
[12] S. Godunov. Problem of the dichotomy of the spectrum of a matrix , 1986 .
[13] Don Coppersmith,et al. Matrix multiplication via arithmetic progressions , 1987, STOC.
[14] T. W. Anderson,et al. Generation of random orthogonal matrices , 1987 .
[15] Jack Dongarra,et al. ScaLAPACK Users' Guide , 1987 .
[16] S. Godunov,et al. Circular dichotomy of the spectrum of a matrix , 1988 .
[17] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[18] A. Malyshev. Computing invariant subspaces of a regular linear pencil of matrices , 1989 .
[19] C. Loan,et al. A Storage-Efficient $WY$ Representation for Products of Householder Transformations , 1989 .
[20] Volker Strassen,et al. Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[21] Nicholas J. Higham,et al. Exploiting fast matrix multiplication within the level 3 BLAS , 1990, TOMS.
[22] Nicholas J. Higham,et al. INVERSE PROBLEMS NEWSLETTER , 1991 .
[23] James Demmel,et al. Stability of block algorithms with fast level-3 BLAS , 1992, TOMS.
[24] C. Pan,et al. Rank-Revealing QR Factorizations and the Singular Value Decomposition , 1992 .
[25] P. Gács,et al. Algorithms , 1992 .
[26] A. Malyshev. Parallel Algorithm for Solving Some Spectral Problems of Linear Algebra , 1993 .
[27] Guodong Zhang,et al. A Parallel Implementation of the Invariant Subspace Decomposition Algorithm for Dense Symmetric Matrices , 1993, PPSC.
[28] David E. Keyes,et al. Proceedings of the Sixth SIAM Conference on Parallel Processing for Scientific Computing, PPSC 1993, Norfolk, Virginia, USA, March 22-24, 1993 , 1993, PPSC.
[29] James Demmel,et al. Design of a Parallel Nonsymmetric Eigenroutine Toolbox, Part I , 1993, PPSC.
[30] G. Stewart. Updating a Rank-Revealing ULV Decomposition , 1993, SIAM J. Matrix Anal. Appl..
[31] Xiaobai Sun,et al. The PRISM project: infrastructure and algorithms for parallel eigensolvers , 1993, Proceedings of Scalable Parallel Libraries Conference.
[32] Ilse C. F. Ipsen,et al. On Rank-Revealing Factorisations , 1994, SIAM J. Matrix Anal. Appl..
[33] James Demmel,et al. Stability of block LU factorization , 1992, Numer. Linear Algebra Appl..
[34] Nicholas J. Higham. Stability of Parallel Triangular System Solvers , 1995, SIAM J. Sci. Comput..
[35] Ming Gu,et al. Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..
[36] Gene H. Golub,et al. Matrix computations (3rd ed.) , 1996 .
[37] D. Day. How the QR algorithm fails to converge and how to fix it , 1996 .
[38] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.
[39] James Demmel,et al. Applied Numerical Linear Algebra , 1997 .
[40] Sivan Toledo. Locality of Reference in LU Decomposition with Partial Pivoting , 1997, SIAM J. Matrix Anal. Appl..
[41] J. Demmel,et al. An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems , 1997 .
[42] Christian H. Bischof,et al. Computing rank-revealing QR factorizations of dense matrices , 1998, TOMS.
[43] J. Demmel,et al. Using the Matrix Sign Function to Compute Invariant Subspaces , 1998, SIAM J. Matrix Anal. Appl..
[44] James Demmel,et al. LAPACK Users' Guide, Third Edition , 1999, Software, Environments and Tools.
[45] Jack Dongarra,et al. LAPACK Users' Guide, 3rd ed. , 1999 .
[46] Erik Elmroth,et al. Applying recursion to serial and parallel QR factorization leads to better performance , 2000, IBM J. Res. Dev..
[47] Enrique S. Quintana-Ortí,et al. Parallel Spectral Division Using the Matrix Sign Function for the Generalized Eigenproblem , 2000, Int. J. High Speed Comput..
[48] Ran Raz,et al. On the complexity of matrix product , 2002, STOC '02.
[49] Christopher Umans,et al. A group-theoretic approach to fast matrix multiplication , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..
[50] Arnold Schönhage,et al. Schnelle Multiplikation großer Zahlen , 1971, Computing.
[51] Christopher Umans. Group-theoretic algorithms for matrix multiplication , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[52] James Demmel,et al. Fast matrix multiplication is stable , 2006, Numerische Mathematik.