Creep crack simulations using continuum damage mechanics and extended finite element method

In the present work, elasto-plastic creep crack growth simulations are performed using continuum damage mechanics and extended finite element method. Liu–Murakami creep damage model and explicit time integration scheme are used to evaluate the creep strain and damage variable for various materials at different temperatures. Compact tension and C-shaped tension specimens are selected for the simulation of crack growth analysis. For damage evaluation, both local and nonlocal approaches are employed. The accuracy of the extended finite element method solutions is checked by comparing with experimental results and finite element solutions. These results show that the extended finite element method requires a much coarser mesh to effectively model crack propagation. It is also shown that mesh independent results can be achieved by using nonlocal implementation.

[1]  B. K. Mishra,et al.  A homogenized multigrid XFEM to predict the crack growth behavior of ductile material in the presence of microstructural defects , 2016, Engineering Fracture Mechanics.

[2]  Wei Wang,et al.  A discrete viscoplastic damage model for time-dependent behaviour of quasi-brittle rocks , 2015 .

[3]  S. Murakami,et al.  Computational methods for creep fracture analysis by damage mechanics , 2000 .

[4]  Noel P. O’Dowd,et al.  Creep crack growth prediction using a damage based approach , 2003 .

[5]  Wei Sun,et al.  Testing and modelling of creep crack growth in compact tension specimens from a P91 weld at 650 °C , 2010 .

[6]  A. Becker,et al.  Damage mechanics based predictions of creep crack growth in 316 stainless steel , 2010 .

[7]  C. V. Singh,et al.  Development of a synergistic damage mechanics model to predict evolution of ply cracking and stiffness changes in multidirectional composite laminates under creep , 2016 .

[8]  M. F. Ashby,et al.  Intergranular fracture during power-law creep under multiaxial stresses , 1980 .

[9]  Charles E. Augarde,et al.  Fracture modeling using meshless methods and level sets in 3D: Framework and modeling , 2012 .

[10]  Masoud K. Darabi,et al.  A straightforward numerical technique for finite element implementation of non-local gradient-dependent continuum damage mechanics theories , 2010 .

[11]  Yan Liu,et al.  Damage Localization of Conventional Creep Damage Models and Proposition of a New Model for Creep Damage Analysis , 1998 .

[12]  T. Rabczuk,et al.  T-spline based XIGA for fracture analysis of orthotropic media , 2015 .

[13]  H. Nguyen-Xuan,et al.  A simple and robust three-dimensional cracking-particle method without enrichment , 2010 .

[14]  A. S. Shedbale,et al.  Nonlinear Simulation of an Embedded Crack in the Presence of Holes and Inclusions by XFEM , 2013 .

[15]  Timon Rabczuk,et al.  Damage and fracture algorithm using the screened Poisson equation and local remeshing , 2016 .

[16]  Martin Fagerström,et al.  A framework for fracture modelling based on the material forces concept with XFEM kinematics , 2005 .

[17]  Z. Bažant,et al.  Nonlocal Continuum Damage, Localization Instability and Convergence , 1988 .

[18]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[19]  Yun‐Jae Kim,et al.  Creep failure simulations of 316H at 550 °C: Part I – A method and validation , 2011 .

[20]  Timon Rabczuk,et al.  Dual‐horizon peridynamics , 2015, 1506.05146.

[21]  M. Kawai,et al.  Finite element analysis of creep crack growth by a local approach , 1988 .

[22]  H. Waisman,et al.  A nonlocal continuum damage mechanics approach to simulation of creep fracture in ice sheets , 2013 .

[23]  B. K. Mishra,et al.  Fatigue crack growth analysis of an interfacial crack in heterogeneous materials using homogenized XIGA , 2016 .

[24]  G. A. Webster,et al.  Prediction of creep crack growth from uniaxial creep data , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[25]  Ted Belytschko,et al.  Cracking particles: a simplified meshfree method for arbitrary evolving cracks , 2004 .

[26]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[27]  F. H. Norton,et al.  The Creep of Steel at High Temperatures , 2017 .

[28]  T. Rabczuk,et al.  XLME interpolants, a seamless bridge between XFEM and enriched meshless methods , 2014 .

[29]  Wei Sun,et al.  Analysis and Design of a Small, Two-Bar Creep Test Specimen , 2013 .

[30]  E. Mazza,et al.  Stress regime-dependent creep constitutive model considerations in finite element continuum damage mechanics , 2013 .

[31]  Shan-Tung Tu,et al.  A multiaxial creep-damage model for creep crack growth considering cavity growth and microcrack interaction , 2014 .

[32]  Avimanyu Das,et al.  Simulation and quantification of creep damage , 2015 .

[33]  Dandan Xu,et al.  Extended finite element method analysis for shielding and amplification effect of a main crack interacted with a group of nearby parallel microcracks , 2016 .

[34]  B. K. Mishra,et al.  A simple, efficient and accurate Bézier extraction based T-spline XIGA for crack simulations , 2017 .

[35]  Phill-Seung Lee,et al.  Phantom-node method for shell models with arbitrary cracks , 2012 .

[36]  Zhenqing Wang,et al.  Extended finite element method for power-law creep crack growth , 2014 .

[37]  T. Belytschko,et al.  MODELING HOLES AND INCLUSIONS BY LEVEL SETS IN THE EXTENDED FINITE-ELEMENT METHOD , 2001 .

[38]  Wei Sun,et al.  Creep crack growth data and prediction for a P91 weld at 650 °C , 2010 .

[39]  Jaan Kiusalaas,et al.  Numerical Methods in Engineering , 2010 .

[40]  M. Saber Experimental and finite element studies of creep and creep crack growth in P91 and P92 weldments , 2011 .

[41]  R. W. Evans,et al.  Creep of metals and alloys , 1985 .

[42]  Noel P. O’Dowd,et al.  Analysis of Creep Crack Initiation and Growth in Different Geometries for 316H and Carbon Manganese Steels , 2006 .

[43]  M. Koji,et al.  Introduction to Nonlinear Finite Element Analysis , 2008 .

[44]  Wei Sun,et al.  On the Determination of Material Creep Constants Using Miniature Creep Test Specimens , 2014 .

[45]  T. Belytschko,et al.  A three dimensional large deformation meshfree method for arbitrary evolving cracks , 2007 .

[46]  Timon Rabczuk,et al.  Steiner-point free edge cutting of tetrahedral meshes with applications in fracture , 2017 .

[47]  Bijay K. Mishra,et al.  The numerical simulation of fatigue crack growth using extended finite element method , 2012 .

[48]  N. Challamel,et al.  From discrete to nonlocal continuum damage mechanics: Analysis of a lattice system in bending using a continualized approach , 2015 .

[49]  Sumio Murakami,et al.  Mesh-Dependence in Local Approach to Creep Fracture , 1995 .

[50]  B. K. Mishra,et al.  A Modified Theta Projection Model for Creep Behavior of Metals and Alloys , 2016, Journal of Materials Engineering and Performance.

[51]  Shan-Tung Tu,et al.  Simulations of creep crack growth in 316 stainless steel using a novel creep-damage model , 2013 .

[52]  F. A. Leckie,et al.  Creep problems in structural members , 1969 .

[53]  Huang Yuan,et al.  On damage accumulations in the cyclic cohesive zone model for XFEM analysis of mixed-mode fatigue crack growth , 2009 .

[54]  Xiaoping Zhou,et al.  A multi-dimensional space method for dynamic cracks problems using implicit time scheme in the framework of the extended finite element method , 2015 .

[55]  J. N. Reddy,et al.  New model for creep damage analysis and its application to creep crack growth simulations , 2014 .

[56]  T. R. Hsu,et al.  A finite element algorithm for creep crack growth , 1984 .

[57]  Pierre Léger,et al.  A combined XFEM–damage mechanics approach for concrete crack propagation , 2015 .

[58]  A. Levy,et al.  Finite Element Three-Dimensional Elastic-Plastic Creep Analysis , 1981 .

[59]  Haim Waisman,et al.  From diffuse damage to sharp cohesive cracks: A coupled XFEM framework for failure analysis of quasi-brittle materials , 2016 .

[60]  Bijay K. Mishra,et al.  A stochastic XFEM model for the tensile strength prediction of heterogeneous graphite based on microstructural observations , 2017 .

[61]  J. C. D. César de Sá,et al.  Damage driven crack initiation and propagation in ductile metals using XFEM , 2013 .

[62]  Timon Rabczuk,et al.  Phase-field analysis of finite-strain plates and shells including element subdivision , 2016 .

[63]  Timon Rabczuk,et al.  Element-wise fracture algorithm based on rotation of edges , 2013 .

[64]  T. Hyde,et al.  A Simplified Method for Predicting the Creep Crack Growth in P91 Welds at 650 °C , 2010 .

[65]  Yun‐Jae Kim,et al.  Creep failure simulations of 316H at 550 °C: Part II – Effects of specimen geometry and loading mode , 2013 .

[66]  Timon Rabczuk,et al.  Dual-horizon peridynamics: A stable solution to varying horizons , 2017, 1703.05910.

[67]  M. Baghani,et al.  A viscoelastic–viscoplastic constitutive model considering damage evolution for time dependent materials: Application to asphalt mixes , 2016 .

[68]  Timon Rabczuk,et al.  Finite strain fracture of 2D problems with injected anisotropic softening elements , 2014 .