Tropical Forests of Réunion Island Classified from Airborne Full-Waveform LiDAR Measurements

From an unprecedented experiment using airborne measurements performed over the rich forests of Reunion Island, this paper aims to present a methodology for the classification of diverse tropical forest biomes as retrieved from vertical profiles measured using a full-waveform LiDAR. This objective is met through the retrieval of both the canopy height and the Leaf Area Index (LAI), obtained as an integral of the foliage profile. The campaign involved sites ranging from coastal to rain forest, including tropical montane cloud forest, as found on the Belouve plateau. The mean values of estimated LAI retrieved from the apparent foliage profile are between ~5 and 8 m 2 /m 2 , and the mean canopy height values are ~15 m for both tropical montane cloud and rain forests. Good agreement is found between LiDAR-and MODIS-derived LAI for moderate LAI (~5 m 2 /m 2), but the LAI retrieved from LiDAR is larger than MODIS on thick rain forest sites (~8 against ~6 m 2 /m 2 from MODIS). Regarding the characterization of tropical forest biomes, we show that the rain and montane tropical forests can be well distinguished from planted forests by the use of the parameters directly retrieved from LiDAR measurements.

[1]  Mathieu Rouget,et al.  An Assessment of Habitat Diversity and Transformation on La Réunion Island (Mascarene Islands, Indian Ocean) as a Basis for Identifying Broad-scale Conservation Priorities , 2005, Biodiversity & Conservation.

[2]  David J. Harding,et al.  A portable LIDAR system for rapid determination of forest canopy structure , 2004 .

[3]  M. Keller,et al.  Airborne lidar-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+ , 2015, Carbon Balance and Management.

[4]  J. Means Use of Large-Footprint Scanning Airborne Lidar To Estimate Forest Stand Characteristics in the Western Cascades of Oregon , 1999 .

[5]  J. Roujean,et al.  Retrieval of atmospheric properties and surface bidirectional reflectances over land from POLDER/ADEOS , 1997 .

[6]  J. Blair,et al.  The Laser Vegetation Imaging Sensor: a medium-altitude, digitisation-only, airborne laser altimeter for mapping vegetation and topography , 1999 .

[7]  G. Asner,et al.  A universal airborne LiDAR approach for tropical forest carbon mapping , 2011, Oecologia.

[8]  K. Moffett,et al.  Remote Sens , 2015 .

[9]  Mark O. Kimberley,et al.  Leaf Area Index, Biomass Carbon and Growth Rate of Radiata Pine Genetic Types and Relationships with LiDAR , 2011 .

[10]  Mounir Louhaichi,et al.  Mediterranean forest mapping using hyper-spectral satellite imagery , 2013, Arabian Journal of Geosciences.

[11]  Patrick Chazette,et al.  French airborne lidar measurements for Eyjafjallajökull ash plume survey , 2012 .

[12]  P. Reich,et al.  Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest , 1993, Oecologia.

[13]  W. Walker,et al.  Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM+, Quickbird) synergy , 2006 .

[14]  C. Woodcock,et al.  Estimating forest LAI profiles and structural parameters using a ground-based laser called 'Echidna'. , 2008, Tree physiology.

[15]  Randolph H. Wynne,et al.  Fusion of Small-Footprint Lidar and Multispectral Data to Estimate Plot- Level Volume and Biomass in Deciduous and Pine Forests in Virginia, USA , 2004, Forest Science.

[16]  J. Hicke,et al.  Global synthesis of leaf area index observations: implications for ecological and remote sensing studies , 2003 .

[17]  S. Sorooshian,et al.  Using airborne lidar to predict Leaf Area Index in cottonwood trees and refine riparian water-use estimates , 2006 .

[18]  Peter M. Vitousek,et al.  EXPERIMENTAL INVESTIGATION OF NUTRIENT LIMITATION OF FOREST GROWTH ON WET TROPICAL MOUNTAINS , 1998 .

[19]  Alan H. Strahler,et al.  Three-dimensional forest reconstruction and structural parameter retrievals using a terrestrial full-waveform lidar instrument (Echidna®) , 2013 .

[20]  Alan H. Strahler,et al.  Deriving and validating Leaf Area Index (LAI) at multiple spatial scales through lidar remote sensing: a case study in Sierra National Forest, CA , 2014 .

[21]  Erik Næsset,et al.  Mapping LAI in a Norway spruce forest using airborne laser scanning , 2009 .

[22]  R. Dubayah,et al.  Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rainforest , 2002 .

[23]  W. Cohen,et al.  Lidar Remote Sensing of the Canopy Structure and Biophysical Properties of Douglas-Fir Western Hemlock Forests , 1999 .

[24]  S. T. Gower,et al.  Rapid Estimation of Leaf Area Index in Conifer and Broad-Leaf Plantations , 1991 .

[25]  S. T. Gower,et al.  Leaf area index of boreal forests: theory, techniques, and measurements , 1997 .

[26]  David J. Harding,et al.  Light transmittance in forest canopies determined using airborne laser altimetry and in-canopy quantum measurements , 2001 .

[27]  R. Measures Laser remote sensing : fundamentals and applications , 1984 .

[28]  J. Eitel,et al.  Estimating aboveground biomass and leaf area of low-stature Arctic shrubs with terrestrial LiDAR , 2015 .

[29]  Patrick Chazette,et al.  End-to-End Simulation for a Forest-Dedicated Full-Waveform Lidar Onboard a Satellite Initialized from Airborne Ultraviolet Lidar Experiments , 2015, Remote. Sens..

[30]  S. Hensley,et al.  A study of forest biomass estimates from lidar in the northern temperate forests of New England , 2013 .

[31]  P. Campanello,et al.  High NDVI and Potential Canopy Photosynthesis of South American Subtropical Forests despite Seasonal Changes in Leaf Area Index and Air Temperature , 2014 .

[32]  J. Pelon,et al.  Determination by spaceborne backscatter lidar of the structural parameters of atmospheric scattering layers. , 2001, Applied optics.

[33]  G. Powell,et al.  High-resolution forest carbon stocks and emissions in the Amazon , 2010, Proceedings of the National Academy of Sciences.

[34]  Wenge Ni-Meister,et al.  Modeling lidar waveforms in heterogeneous and discrete canopies , 2001, IEEE Trans. Geosci. Remote. Sens..

[35]  C. Platt,et al.  Remote Sounding of High Clouds. III: Monte Carlo Calculations of Multiple-Scattered Lidar Returns. , 1981 .

[36]  P. Chazette,et al.  Interest of a Full-Waveform Flown UV Lidar to Derive Forest Vertical Structures and Aboveground Carbon , 2014 .

[37]  R. Hall,et al.  Incorporating texture into classification of forest species composition from airborne multispectral images , 2000 .

[38]  S. Running,et al.  MODIS Leaf Area Index (LAI) And Fraction Of Photosynthetically Active Radiation Absorbed By Vegetation (FPAR) Product , 1999 .

[39]  Jacques Pelon,et al.  Desert dust aerosol columnar properties over ocean and continental Africa from Lidar in-Space Technology Experiment (LITE) and Meteosat synergy , 2006 .

[40]  A. Strahler,et al.  Global clumping index map derived from the MODIS BRDF product , 2012 .

[41]  Michael L. Goulden,et al.  Seasonal patterns of tropical forest leaf area index and CO2 exchange , 2008 .

[42]  G. Hurtt,et al.  Estimation of tropical forest height and biomass dynamics using lidar remote sensing at La Selva, Costa Rica , 2009 .

[43]  D. Strasberg Diversity, size composition and spatial aggregation among trees on a 1-ha rain forest plot at La Réunion , 1996, Biodiversity & Conservation.

[44]  R. Dubayah,et al.  Estimation of tropical forest structural characteristics using large-footprint lidar , 2002 .

[45]  Rasmus Fensholt,et al.  MODIS leaf area index products: from validation to algorithm improvement , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[46]  Emilio Chuvieco,et al.  Estimation of leaf area index and covered ground from airborne laser scanner (Lidar) in two contrasting forests , 2004 .

[47]  Dominique Guyon,et al.  Observing the Forest Canopy with a New Ultra-Violet Compact Airborne Lidar , 2010, Sensors.

[48]  M. Fournier,et al.  The use of terrestrial LiDAR technology in forest science: application fields, benefits and challenges , 2011, Annals of Forest Science.

[49]  Christopher D. Barnet,et al.  Hyperspectral Earth Observation from IASI: Five Years of Accomplishments , 2012 .

[50]  J. Pelon,et al.  Comparative lidar study of the optical, geometrical, and dynamical properties of stratospheric post‐volcanic aerosols, following the eruptions of El Chichon and Mount Pinatubo , 1995 .

[51]  Bryan Blair,et al.  Retrieval of vertical LAI profiles over tropical rain forests using waveform lidar at La Selva, Costa Rica , 2012 .

[52]  Margarita Huesca,et al.  Using AHS hyper-spectral images to study forest vegetation recovery after a fire , 2013 .

[53]  Philippe Labazuy,et al.  Eyjafjallajökull ash concentrations derived from both lidar and modeling , 2012 .

[54]  J. Bryan Blair,et al.  Decomposition of laser altimeter waveforms , 2000, IEEE Trans. Geosci. Remote. Sens..

[55]  W. Cohen,et al.  Surface lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA , 1999 .