On scale-free and poly-scale behaviors of random hierarchical networks

In this paper the question of statistical properties of block-hierarchical random matrices is raised for the first time in connection with structural characteristics of random hierarchical networks obtained by a 'mipmapping' procedure. In particular, we compute numerically the spectral density of large random adjacency matrices defined via a hierarchy of the Bernoulli distributions {q1,q2,...} on matrix elements, where qγ depends on the hierarchy level γ as qγ = p−μγ (μ>0). For the spectral density we clearly see scale-free behavior. We show also that for the Gaussian distributions on matrix elements with zero mean and variances σγ = p−νγ, the tail of the spectral density, ρG(λ), behaves as ρG(λ)~|λ|−(2−ν)/(1−ν) for and 0<ν<1, while for ν≥1 the power-law behavior is terminated. We also find that the vertex degree distribution of such hierarchical networks has a poly-scale fractal behavior extended over a very broad range of scales.

[1]  Random hierarchical matrices: spectral properties and relation to polymers on disordered trees , 2008, 0805.3543.

[2]  A. Barabasi,et al.  Scale-free characteristics of random networks: the topology of the world-wide web , 2000 .

[3]  K. Goh,et al.  Spectra and eigenvectors of scale-free networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  V A Avetisov,et al.  p-adic models of ultrametric diffusion constrained by hierarchical energy landscapes , 2002 .

[5]  Nikita Sidorov,et al.  Ergodic properties of the Erdös measure, the entropy of the goldenshift, and related problems , 1998 .

[6]  P. Erdös On a Family of Symmetric Bernoulli Convolutions , 1939 .

[7]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[8]  ON TOPOLOGICAL CORRELATIONS IN TRIVIAL KNOTS: FROM BROWNIAN BRIDGES TO CRUMPLED GLOBULES , 2005 .

[9]  E. Wigner Random Matrices in Physics , 1967 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  V. Sós,et al.  Algebraic methods in graph theory , 1981 .

[12]  H. Stanley,et al.  Statistical physics of macromolecules , 1995 .

[13]  Reka Albert,et al.  Mean-field theory for scale-free random networks , 1999 .

[14]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[15]  E. Shakhnovich,et al.  The role of topological constraints in the kinetics of collapse of macromolecules , 1988 .

[16]  J. D. Cloizeaux,et al.  Polymers in Solution: Their Modelling and Structure , 2010 .

[17]  A. Barabasi,et al.  Spectra of "real-world" graphs: beyond the semicircle law. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  A. Khokhlov,et al.  Some problems of the statistical physics of polymer chains with volume interaction , 1978 .

[19]  V. A. Avetisov,et al.  Application of p-adic analysis to models of spontaneous breaking of the replica symmetry , 2008 .

[20]  Shlomo Havlin,et al.  Crumpled globule model of the three-dimensional structure of DNA , 1993 .

[21]  Ogielski,et al.  Dynamics on ultrametric spaces. , 1985, Physical review letters.

[22]  H. Frauenfelder,et al.  Proteins are paradigms of stochastic complexity , 2005 .

[23]  Z. Neda,et al.  Networks in life: Scaling properties and eigenvalue spectra , 2002, cond-mat/0303106.

[24]  Huberman,et al.  Complexity and the relaxation of hierarchical structures. , 1986, Physical review letters.

[25]  Albert-Laszlo Barabasi,et al.  Deterministic scale-free networks , 2001 .

[26]  Andrey V. Dobrynin,et al.  Cascade of Transitions of Polyelectrolytes in Poor Solvents , 1996 .

[27]  F. Dyson Statistical Theory of the Energy Levels of Complex Systems. I , 1962 .

[28]  B. Solomyak On the random series $\sum \pm \lambda^n$ (an Erdös problem) , 1995 .

[29]  Edward Ott,et al.  Markov tree model of transport in area-preserving maps , 1985 .

[30]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[31]  Dima L. Shepelyansky,et al.  CORRELATION PROPERTIES OF DYNAMICAL CHAOS IN HAMILTONIAN SYSTEMS , 1984 .

[32]  Hai-Shan Wu,et al.  Self-Affinity and Lacunarity of Chromatin Texture in Benign and Malignant Breast Epithelial Cell Nuclei , 1998 .

[33]  E Ben-Naim,et al.  Kinetic theory of random graphs: from paths to cycles. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  S. V. Kozyrev,et al.  Application of p-adic analysis to models of breaking of replica symmetry , 1999 .

[35]  Monatshefte für Mathematik und Physik (Wien) , 1891 .

[36]  János Komlós,et al.  The eigenvalues of random symmetric matrices , 1981, Comb..

[37]  G. J. Rodgers,et al.  INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 38 (2005) 9431–9437 doi:10.1088/0305-4470/38/43/003 Eigenvalue spectra of complex networks , 2005 .

[38]  M. P. Pato,et al.  Disordered ensembles of random matrices. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  W. Browder,et al.  Annals of Mathematics , 1889 .