Far-red photosynthesis: Two charge separation pathways exist in plant Photosystem II reaction center.

[1]  J. Kern,et al.  Solar energy conversion by photosystem II: principles and structures , 2023, Photosynthesis Research.

[2]  S. Styring,et al.  Molecular basis for turnover inefficiencies (misses) during water oxidation in photosystem II , 2022, Chemical science.

[3]  C. Mullineaux,et al.  A kaleidoscope of photosynthetic antenna proteins and their emerging roles , 2022, Plant physiology.

[4]  D. Pantazis,et al.  The Electronic Origin of Far‐Red‐Light‐Driven Oxygenic Photosynthesis , 2022, Angewandte Chemie.

[5]  G. Fleming,et al.  The initial charge separation step in oxygenic photosynthesis , 2021, Nature Communications.

[6]  Ville R. I. Kaila,et al.  The low spin - high spin equilibrium in the S2-state of the water oxidizing enzyme. , 2018, Biochimica et biophysica acta. Bioenergetics.

[7]  S. Styring,et al.  The wavelength of the incident light determines the primary charge separation pathway in Photosystem II , 2018, Scientific Reports.

[8]  Felix M. Ho,et al.  Tyrozine D oxidation and redox equilibrium in photosystem II. , 2017, Biochimica et biophysica acta. Bioenergetics.

[9]  R. Grondelle,et al.  Quantum design of photosynthesis for bio-inspired solar-energy conversion , 2017, Nature.

[10]  Marcin Sikorski,et al.  Structure of photosystem II and substrate binding at room temperature , 2016, Nature.

[11]  S. Styring,et al.  Defining the Far-red Limit of Photosystem I , 2014, The Journal of Biological Chemistry.

[12]  J. Sjöholm,et al.  The photochemistry in Photosystem II at 5 K is different in visible and far-red light. , 2014, Biochemistry.

[13]  E. Schlodder,et al.  Long-Wavelength Limit of Photochemical Energy Conversion in Photosystem I , 2014, Journal of the American Chemical Society.

[14]  D. Pantazis,et al.  Two interconvertible structures that explain the spectroscopic properties of the oxygen-evolving complex of photosystem II in the S2 state. , 2012, Angewandte Chemie.

[15]  G. Renger Mechanism of light induced water splitting in Photosystem II of oxygen evolving photosynthetic organisms. , 2012, Biochimica et biophysica acta.

[16]  S. Styring,et al.  Misses during Water Oxidation in Photosystem II Are S State-dependent* , 2012, The Journal of Biological Chemistry.

[17]  S. Styring,et al.  Stability of the S₃and S₂state intermediates in photosystem II directly probed by EPR spectroscopy. , 2012, Biochemistry.

[18]  I. V. van Stokkum,et al.  The role of the individual Lhcas in photosystem I excitation energy trapping. , 2011, Biophysical journal.

[19]  Keisuke Kawakami,et al.  Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å , 2011, Nature.

[20]  R. van Grondelle,et al.  Multiple charge-separation pathways in photosystem II: modeling of transient absorption kinetics. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[21]  I. V. van Stokkum,et al.  Two different charge separation pathways in photosystem II. , 2010, Biochemistry.

[22]  Rajiv Luthra,et al.  Independent initiation of primary electron transfer in the two branches of the photosystem I reaction center , 2010, Proceedings of the National Academy of Sciences.

[23]  H. Dau,et al.  Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. , 2009, Accounts of chemical research.

[24]  J. Sjöholm,et al.  The S0 state of the water oxidizing complex in photosystem II: pH dependence of the EPR split signal induction and mechanistic implications. , 2009, Biochemistry.

[25]  S. Styring,et al.  Defining the Far-Red Limit of Photosystem II in Spinach[C][W] , 2009, The Plant Cell Online.

[26]  Felix M. Ho,et al.  Direct quantification of the four individual S states in Photosystem II using EPR spectroscopy. , 2008, Biochimica et biophysica acta.

[27]  Holger Dau,et al.  The manganese complex of photosystem II in its reaction cycle—Basic framework and possible realization at the atomic level , 2008 .

[28]  Fabrice Rappaport,et al.  Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in Photosystem II , 2008 .

[29]  Stenbjörn Styring,et al.  Dimeric and Monomeric Organization of Photosystem II , 2006, Journal of Biological Chemistry.

[30]  M. G. Müller,et al.  Kinetics and mechanism of electron transfer in intact photosystem II and in the isolated reaction center: pheophytin is the primary electron acceptor. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Nathan Nelson,et al.  Structure and function of photosystems I and II. , 2006, Annual review of plant biology.

[32]  I. V. van Stokkum,et al.  Initial electron donor and acceptor in isolated Photosystem II reaction centers identified with femtosecond mid-IR spectroscopy. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[33]  N. Ioannidis,et al.  Trapping of metalloradical intermediates of the S-states at liquid helium temperatures. Overview of the phenomenology and mechanistic implications. , 2005, Biochemistry.

[34]  E. Knapp,et al.  Redox potentials of chlorophylls in the photosystem II reaction center. , 2005, Biochemistry.

[35]  A. Rutherford,et al.  Low-temperature electron transfer in photosystem II: a tyrosyl radical and semiquinone charge pair. , 2004, Biochemistry.

[36]  S. Styring,et al.  Quantification of photosystem I and II in different parts of the thylakoid membrane from spinach. , 2004, Biochimica et biophysica acta.

[37]  S. Styring,et al.  Formation of split electron paramagnetic resonance signals in photosystem II suggests that tyrosine(Z) can be photooxidized at 5 K in the S0 and S1 states of the oxygen-evolving complex. , 2003, Biochemistry.

[38]  B. Diner,et al.  Site-directed mutations at D1-His198 and D2-His197 of photosystem II in Synechocystis PCC 6803: sites of primary charge separation and cation and triplet stabilization. , 2001, Biochemistry.

[39]  A. Rutherford,et al.  Comparative study of the g=4.1 EPR signals in the S(2) state of photosystem II. , 2000, Biochimica et biophysica acta.

[40]  Peterson,et al.  Methanol modification of the electron paramagnetic resonance signals from the S(0) and S(2) states of the water-oxidizing complex of photosystem II , 1999, Biochimica et biophysica acta.

[41]  J. D. Paula,et al.  Low-Temperature Optical and Resonance Raman Spectra of a Carotenoid Cation Radical in Photosystem II , 1999 .

[42]  A. Rutherford,et al.  Carotenoid oxidation in photosystem II. , 1999, Biochemistry.

[43]  Mamedov,et al.  The role of cytochrome b559 and tyrosineD in protection against photoinhibition during in vivo photoactivation of photosystem II , 1999, Biochimica et biophysica acta.

[44]  G. Brudvig,et al.  Cytochrome b559 of photosystem II. , 1998, Biochimica et biophysica acta.

[45]  R. D. Britt,et al.  Proximity of acetate, manganese, and exchangeable deuterons to tyrosine YZ. in acetate-inhibited photosystem II membranes: implications for the direct involvement of YZ. in water-splitting. , 1997, Biochemistry.

[46]  W. Lubitz,et al.  Pulsed EPR measurement of the distance between P680 +· and QA −· in photosystem II , 1997, FEBS letters.

[47]  Y. Inoue,et al.  Temperature dependence of the S1 → S2 transition in the oxygen-evolving complex of photosystem II studied by FT-IR spectroscopy , 1993 .

[48]  Y. Inoue,et al.  FT-IR studies on the triplet state of P680 in the photosystem II reaction center: triplet equilibrium within a chlorophyll dimer. , 1993, Biochemistry.

[49]  G. Brudvig,et al.  Cytochrome b-559 may function to protect photosystem II from photoinhibition. , 1988, Biochemistry.

[50]  Stenbjörn Styring,et al.  Deactivation kinetics and temperature dependence of the S-state transitions in the oxygen-evolving system of Photosystem II measured by EPR spectroscopy , 1988 .

[51]  A. Rutherford,et al.  Electron paramagnetic resonance properties of the S2 state of the oxygen-evolving complex of photosystem II , 1986 .

[52]  G. Brudvig,et al.  Electron transfer in photosystem II at cryogenic temperatures. , 1985, Biochemistry.

[53]  Y. Inoue,et al.  Effect of trypsin on PS-II particles. Correlation between Hill-activity, Mn-abundance and peptide pattern , 1985 .

[54]  J. Casey,et al.  EPR detection of a cryogenically photogenerated intermediate in photosynthetic oxygen evolution , 1984 .

[55]  P. Gast,et al.  Photooxidation of chlorophyll in spinach chloroplasts between 10 and 180 K. , 1977, Biochimica et biophysica acta.

[56]  A. Verméglio,et al.  Photooxidation of cytochrome b 559 and the electron donors in chloroplast photosystem II. , 1973, Biochimica et biophysica acta.

[57]  B. Forbush,et al.  COOPERATION OF CHARGES IN PHOTOSYNTHETIC O2 EVOLUTION–I. A LINEAR FOUR STEP MECHANISM , 1970, Photochemistry and photobiology.

[58]  D. Arnon,et al.  LIGHT-INDUCED OXIDATION OF A CHLOROPLAST B-TYPE CYTOCHROME AT -189 degrees C. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[59]  H. Witt,et al.  A Second Chlorophyll Reaction in the Electron Chain of Photosynthesis — Registration by the Repetitive Excitation Technique — , 1967, Zeitschrift fur Naturforschung. Teil B, Chemie, Biochemie, Biophysik, Biologie und verwandte Gebiete.

[60]  J. Amesz,et al.  Two Photochemical Systems in Photosynthesis , 1961, Nature.

[61]  R Emerson,et al.  SOME FACTORS INFLUENCING THE LONG-WAVE LIMIT OF PHOTOSYNTHESIS. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[62]  J. Sjöholm,et al.  Two tyrosines that changed the world: Interfacing the oxidizing power of photochemistry to water splitting in photosystem II. , 2012, Biochimica et biophysica acta.

[63]  A. Rutherford,et al.  Charge separation in photosystem II: a comparative and evolutionary overview. , 2012, Biochimica et biophysica acta.

[64]  A. Zouni,et al.  Light-induced quinone reduction in photosystem II. , 2012, Biochimica et biophysica acta.

[65]  Felix M. Ho,et al.  The formation of the split EPR signal from the S(3) state of Photosystem II does not involve primary charge separation. , 2011, Biochimica et biophysica acta.

[66]  A. Rutherford,et al.  Side-Path Electron Donors: Cytochrome b559, Chlorophyll Z and β-Carotene , 2005 .

[67]  R. van Grondelle,et al.  Primary charge separation in Photosystem II , 2004, Photosynthesis Research.

[68]  H. Frank,et al.  Carotenoid photooxidation in photosystem II. , 2001, Archives of biochemistry and biophysics.

[69]  G. Dismukes,et al.  Intermediates of a polynuclear manganese center involved in photosynthetic oxidation of water. , 1981, Proceedings of the National Academy of Sciences of the United States of America.