iCoDA: Interactive and exploratory data completeness analysis

The completeness of data is vital to data quality. In this demo, we present iCoDA, a system that supports interactive, exploratory data completeness analysis. iCoDA provides algorithms and tools to generate tableau patterns that concisely summarize the incomplete data under various configuration settings. During the demo, the audience can use iCoDA to interactively explore the tableau patterns generated from incomplete data, with the flexibility of filtering and navigating through different granularity of these patterns. iCoDA supports various visualization methods to the audience for the display of tableau patterns. Overall, we will demonstrate that iCoDA provides sophisticated analysis of data completeness.

[1]  Wenfei Fan,et al.  Conditional Functional Dependencies for Data Cleaning , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[2]  Divesh Srivastava,et al.  Efficient and Effective Analysis of Data Quality using Pattern Tableaux , 2011, IEEE Data Eng. Bull..

[3]  J. Stasko,et al.  Focus+context display and navigation techniques for enhancing radial, space-filling hierarchy visualizations , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[4]  Wendy Hui Wang,et al.  Understanding Data Completeness in Network Monitoring Systems , 2012, 2012 IEEE 12th International Conference on Data Mining.

[5]  Hung-Hsuan Chen,et al.  Discovering missing links in networks using vertex similarity measures , 2012, SAC '12.

[6]  Thomas C. Redman,et al.  Data Quality Management and Technology , 1992 .

[7]  Renée J. Miller,et al.  Discovering data quality rules , 2008, Proc. VLDB Endow..

[8]  Felix Naumann,et al.  Assessing the Completeness of Sensor Data , 2006, DASFAA.

[9]  R. Solé,et al.  Data completeness—the Achilles heel of drug-target networks , 2008, Nature Biotechnology.