Predicting the dengue cluster outbreak dynamics in Yogyakarta, Indonesia: a modelling study

[1]  N. Jewell,et al.  Disruption of spatiotemporal clustering in dengue cases by wMel Wolbachia in Yogyakarta, Indonesia , 2022, Scientific Reports.

[2]  H. Folmer,et al.  Spatiotemporal high-resolution prediction and mapping: methodology and application to dengue disease , 2022, Journal of Geographical Systems.

[3]  Christopher R. Prentice,et al.  Community vulnerability and mobility: What matters most in spatio-temporal modeling of the COVID-19 pandemic? , 2021, Social Science & Medicine.

[4]  J. de Andrés,et al.  A comparison of multiple neighborhood matrix specifications for spatio-temporal model fitting: a case study on COVID-19 data , 2021, Stochastic Environmental Research and Risk Assessment.

[5]  N. Jewell,et al.  Efficacy of Wolbachia-infected mosquito deployments for the control of dengue , 2021, The New England journal of medicine.

[6]  A. Gasparrini,et al.  Combined effects of hydrometeorological hazards and urbanisation on dengue risk in Brazil: a spatiotemporal modelling study. , 2021, The Lancet. Planetary health.

[7]  Luis Roman Carrasco,et al.  Spatio-temporal analysis of the main dengue vector populations in Singapore , 2021, Parasites & vectors.

[8]  Zhilin Zeng,et al.  Global, regional, and national dengue burden from 1990 to 2017: A systematic analysis based on the global burden of disease study 2017 , 2021, EClinicalMedicine.

[9]  William H. Elson,et al.  Disease-driven reduction in human mobility influences human-mosquito contacts and dengue transmission dynamics , 2021, PLoS Comput. Biol..

[10]  S. Hay,et al.  Estimating the burden of dengue and the impact of release of wMel Wolbachia-infected mosquitoes in Indonesia: a modelling study , 2019, BMC Medicine.

[11]  J. Rocklöv,et al.  Using Big Data to Monitor the Introduction and Spread of Chikungunya, Europe, 2017 , 2019, Emerging infectious diseases.

[12]  J. Rocklöv,et al.  A combination of incidence data and mobility proxies from social media predicts the intra-urban spread of dengue in Yogyakarta, Indonesia , 2019, PLoS neglected tropical diseases.

[13]  A Aswi,et al.  Bayesian spatial and spatio-temporal approaches to modelling dengue fever: a systematic review , 2018, Epidemiology and Infection.

[14]  R. T. Sasmono,et al.  Baseline Characterization of Dengue Epidemiology in Yogyakarta City, Indonesia, before a Randomized Controlled Trial of Wolbachia for Arboviral Disease Control , 2018, The American journal of tropical medicine and hygiene.

[15]  Scott A. Hale,et al.  Estimating local commuting patterns from geolocated Twitter data , 2016, EPJ Data Science.

[16]  Cécile Viboud,et al.  Infectious Disease Surveillance in the Big Data Era: Towards Faster and Locally Relevant Systems. , 2016, The Journal of infectious diseases.

[17]  Hari Kusnanto,et al.  Prediction of Dengue Outbreaks Based on Disease Surveillance and Meteorological Data , 2016, PloS one.

[18]  Laurent Hébert-Dufresne,et al.  Enhancing disease surveillance with novel data streams: challenges and opportunities , 2015, EPJ Data Science.

[19]  Jiajun Liu,et al.  Understanding Human Mobility from Twitter , 2014, PloS one.

[20]  O. Horstick,et al.  Modeling tools for dengue risk mapping - a systematic review , 2014, International Journal of Health Geographics.

[21]  A. Hoes,et al.  The changing incidence of Dengue Haemorrhagic Fever in Indonesia: a 45-year registry-based analysis , 2014, BMC Infectious Diseases.

[22]  Joacim Rocklöv,et al.  Vectorial Capacity of Aedes aegypti: Effects of Temperature and Implications for Global Dengue Epidemic Potential , 2014, PloS one.

[23]  T. Scott,et al.  House-to-house human movement drives dengue virus transmission , 2012, Proceedings of the National Academy of Sciences.

[24]  Antonio Gasparrini,et al.  Distributed Lag Linear and Non-Linear Models in R: The Package dlnm. , 2011, Journal of statistical software.

[25]  H. Rue,et al.  Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations , 2009 .

[26]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[27]  J. Besag,et al.  Bayesian image restoration, with two applications in spatial statistics , 1991 .