Simulation of non-Abelian gauge theories with optical lattices

Many phenomena occurring in strongly correlated quantum systems still await conclusive explanations. The absence of isolated free quarks in nature is an example. It is attributed to quark confinement, whose origin is not yet understood. The phase diagram for nuclear matter at general temperatures and densities, studied in heavy-ion collisions, is not settled. Finally, we have no definitive theory of high-temperature superconductivity. Though we have theories that could underlie such physics, we lack the tools to determine the experimental consequences of these theories. Quantum simulators may provide such tools. Here we show how to engineer quantum simulators of non-Abelian lattice gauge theories. The systems we consider have several applications: they can be used to mimic quark confinement or to study dimer and valence-bond states (which may be relevant for high-temperature superconductors).

[1]  M. Lewenstein,et al.  Can one trust quantum simulators? , 2011, Reports on progress in physics. Physical Society.

[2]  V. Halyo,et al.  Search for fractional-charge particles in meteoritic material. , 2007, Physical Review Letters.

[3]  M. Lewenstein,et al.  Non-abelian gauge fields and topological insulators in shaken optical lattices. , 2012, Physical review letters.

[4]  P. Zoller,et al.  A Rydberg quantum simulator , 2009, 0907.1657.

[5]  G. Altarelli The standard model of particle physics , 2005, Nature.

[6]  Quantum link models: A discrete approach to gauge theories☆ , 1996, hep-lat/9609042.

[7]  E. Rico,et al.  Atomic quantum simulation of U(N) and SU(N) non-Abelian lattice gauge theories. , 2012, Physical review letters.

[8]  E. Rico,et al.  Atomic quantum simulation of dynamical gauge fields coupled to fermionic matter: from string breaking to evolution after a quench. , 2012, Physical review letters.

[9]  M. Lewenstein,et al.  Quantum non-demolition detection of strongly correlated systems , 2007, 0709.0527.

[10]  A. Houck,et al.  On-chip quantum simulation with superconducting circuits , 2012, Nature Physics.

[11]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[12]  J. Cardy Measuring entanglement using quantum quenches. , 2010, Physical review letters.

[13]  Naoto Nagaosa,et al.  Doping a Mott insulator: Physics of high-temperature superconductivity , 2004, cond-mat/0410445.

[14]  D. Rohrlich,et al.  Lattice Gauge Magnets: Local Isospin From Spin , 1990 .

[15]  d-Wave resonating valence bond states of fermionic atoms in optical lattices. , 2005, Physical review letters.

[16]  U. Wiese Ultracold quantum gases and lattice systems: quantum simulation of lattice gauge theories , 2013, 1305.1602.

[17]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[18]  L. O'raifeartaigh,et al.  Gauge theory: Historical origins and some modern developments , 2000 .

[19]  Guifre Vidal,et al.  Entanglement renormalization and gauge symmetry , 2010, 1007.4145.

[20]  Benni Reznik,et al.  Simulating compact quantum electrodynamics with ultracold atoms: probing confinement and nonperturbative effects. , 2012, Physical review letters.

[21]  Adam Mann High-temperature superconductivity at 25: Still in suspense , 2011, Nature.

[22]  J. Cirac,et al.  Simulating (2+1)-dimensional lattice QED with dynamical matter using ultracold atoms. , 2012, Physical review letters.

[23]  G. Hooft Confinement of quarks , 2003 .

[24]  Maciej Lewenstein,et al.  Ultracold Atoms in Optical Lattices: Simulating quantum many-body systems , 2012 .

[25]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[26]  E. Zohar,et al.  Topological Wilson-loop area law manifested using a superposition of loops , 2012, 1208.1012.

[27]  J. Kosterlitz FINITE MATRIX MODELS WITH CONTINUOUS LOCAL GAUGE INVARIANCE , 2002 .

[28]  D. Toussaint,et al.  Nonperturbative QCD Simulations with 2+1 Flavors of Improved Staggered Quarks , 2009, 0903.3598.

[29]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[30]  M. Lewenstein,et al.  Optical Abelian Lattice Gauge Theories , 2012, 1205.0496.

[31]  A. Kitaev,et al.  Topological multicritical point in the phase diagram of the toric code model and three-dimensional lattice gauge Higgs model , 2010 .

[32]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[33]  G. S. Averichev,et al.  Directed flow of identified particles in Au+Au collisions at √[SNN]=200  GeV at RHIC. , 2012, Physical review letters.

[34]  J. Cirac,et al.  Cold-atom quantum simulator for SU(2) Yang-Mills lattice gauge theory. , 2012, Physical review letters.

[35]  J. Kogut,et al.  Hamiltonian Formulation of Wilson's Lattice Gauge Theories , 1975 .

[36]  M. Creutz Gauge Fixing, the Transfer Matrix, and Confinement on a Lattice , 1977 .

[37]  Immanuel Bloch,et al.  Single-atom-resolved fluorescence imaging of an atomic Mott insulator , 2010, Nature.

[38]  I. Bloch,et al.  Observation of spatially ordered structures in a two-dimensional Rydberg gas , 2012, Nature.

[39]  J. G. Contreras,et al.  J/ψ suppression at forward rapidity in Pb–Pb collisions at √sNN = 5.02 TeV , 2016, 1606.08197.

[40]  E. Demler,et al.  Measuring entanglement entropy of a generic many-body system with a quantum switch. , 2012, Physical review letters.

[41]  Benni Reznik,et al.  Confinement and lattice quantum-electrodynamic electric flux tubes simulated with ultracold atoms. , 2011, Physical review letters.

[42]  Markus Greiner,et al.  A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice , 2009, Nature.

[43]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[44]  P. Anderson The Resonating Valence Bond State in La2CuO4 and Superconductivity , 1987, Science.

[45]  A. Polyakov Compact gauge fields and the infrared catastrophe , 1975 .

[46]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[47]  Xiaofeng Luo,et al.  Scale for the Phase Diagram of Quantum Chromodynamics , 2011, Science.

[48]  Alán Aspuru-Guzik,et al.  Photonic quantum simulators , 2012, Nature Physics.

[49]  P. Zoller,et al.  Mesoscopic Rydberg gate based on electromagnetically induced transparency. , 2008, Physical review letters.

[50]  M. Troyer,et al.  Breakdown of a topological phase: quantum phase transition in a loop gas model with tension. , 2006, Physical review letters.

[51]  Xiao-Gang Wen,et al.  String-net condensation: A physical mechanism for topological phases , 2004, cond-mat/0404617.

[52]  I Bloch,et al.  Experimental realization of plaquette resonating valence-bond states with ultracold atoms in optical superlattices. , 2012, Physical review letters.

[53]  AC-induced superfluidity , 2007, 0709.0605.

[54]  Kai Phillip Schmidt,et al.  Robustness of a perturbed topological phase. , 2010, Physical review letters.