Computer Simulation of Arterial Blood Flow

[1]  K Perktold,et al.  Computer simulation of convective diffusion processes in large arteries. , 1996, Journal of biomechanics.

[2]  K. Perktold,et al.  Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. , 1995, Journal of biomechanics.

[3]  A. Moritz,et al.  Compliance and formation of distal anastomotic intimal hyperplasia in Dacron mesh tube constricted veins used as arterial bypass grafts. , 1994, ASAIO journal.

[4]  K. Perktold,et al.  Hemodynamics in rigid and distensible saccular aneurysms: a numerical study of pulsatile flow characteristics. , 1993, Biorheology.

[5]  Jaroslav Mackerle,et al.  FINITE AND BOUNDARY ELEMENT METHODS IN BIOMECHANICS: A BIBLIOGRAPHY (1976–1991) , 1992 .

[6]  Michael M. Resch,et al.  Pulsatile non-Newtonian blood flow in three-dimensional carotid bifurcation models: a numerical study of flow phenomena under different bifurcation angles. , 1991, Journal of biomedical engineering.

[7]  Michael M. Resch,et al.  Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. , 1991, Journal of biomechanical engineering.

[8]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[9]  H J Steiger,et al.  Pathophysiology of development and rupture of cerebral aneurysms. , 1990, Acta neurochirurgica. Supplementum.

[10]  Michael M. Resch,et al.  Numerical flow studies in human carotid artery bifurcations: basic discussion of the geometric factor in atherogenesis. , 1990, Journal of biomedical engineering.

[11]  M Sugawara,et al.  Blood Flow in the Heart and Large Vessels , 1989, Springer Japan.

[12]  M. H. Friedman A biologically plausible model of thickening of arterial intima under shear. , 1989, Arteriosclerosis.

[13]  Senthil Kumar,et al.  A new approach to grid generation based on local optimisation , 1988 .

[14]  D. Ku,et al.  Hemodynamics and atherosclerosis. Insights and perspectives gained from studies of human arteries. , 1988, Archives of pathology & laboratory medicine.

[15]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[16]  D. Ku,et al.  Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation between Plaque Location and Low and Oscillating Shear Stress , 1985, Arteriosclerosis.

[17]  R S Reneman,et al.  Flow velocity patterns in and distensibility of the carotid artery bulb in subjects of various ages. , 1985, Circulation.

[18]  Robert L. Lee,et al.  A MODIFIED FINITE ELEMENT METHOD FOR SOLVING THE TIME-DEPENDENT, INCOMPRESSIBLE NAVIER-STOKES EQUATIONS. PART 1: THEORY* , 1984 .

[19]  M. Motomiya,et al.  Flow Patterns in the Human Carotid Artery Bifurcation , 1984, Stroke.

[20]  C. Zarins,et al.  Carotid Bifurcation Atherosclerosis: Quantitative Correlation of Plaque Localization with Flow Velocity Profiles and Wall Shear Stress , 1983, Circulation research.

[21]  G. Hutchins,et al.  Arterial geometry affects hemodynamics. A potential risk factor for athersoclerosis. , 1983, Atherosclerosis.

[22]  J. M. Stewart,et al.  Geometrical Methods of Mathematical Physics. By B. F. SCHUTZ. Cambridge University Press, 1980. 250 pp. £20 (hardback), £7.95 (paperback). , 1982, Journal of Fluid Mechanics.

[23]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[24]  L. J. Ernst,et al.  A geometrically nonlinear finite element shell theory , 1981 .

[25]  Y. Fung,et al.  Basic Hemodynamics and Its Role in Disease Processes , 1980 .

[26]  R M Nerem,et al.  The role of fluid mechanics in atherogenesis. , 1980, Journal of biomechanical engineering.

[27]  R. Temam Navier-Stokes Equations , 1977 .

[28]  L. Ehrlich,et al.  Effect of Spatial Variations in Shear on Diffusion at the Wall of an Arterial Branch , 1975, Circulation research.

[29]  D. A. Mcdonald Blood flow in arteries , 1974 .

[30]  R. Schroter,et al.  Atheroma and arterial wall shear - Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[31]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[32]  K. Perktold,et al.  Flow dynamic effect of the anastomotic angle: a numerical study of pulsatile flow in vascular graft anastomoses models. , 1994, Technology and health care : official journal of the European Society for Engineering and Medicine.

[33]  Z Lou,et al.  Biofluid dynamics at arterial bifurcations. , 1992, Critical reviews in biomedical engineering.

[34]  Pj Peter Reuderink,et al.  Analysis of the flow in a 3D distensible model of the carotid artery bifurcation , 1991 .

[35]  D Liepsch,et al.  Studies of fluids simulating blood-like rheological properties and applications in models of arterial branches. , 1991, Biorheology.

[36]  K. Perktold,et al.  Numerische Lösung der Navier-Stokes Gleichungen für Verallgemeinerte Newtonsche Fluide , 1991 .

[37]  Michael M. Resch,et al.  Three-dimensional numerical analysis of pulsatile flow and wall shear stress in the carotid artery bifurcation. , 1991, Journal of biomechanics.

[38]  R. Nerem,et al.  A numerical calculation of flow in a curved tube model of the left main coronary artery. , 1991, Journal of biomechanics.

[39]  J. D. Janssen,et al.  A numerical analysis of steady flow in a three-dimensional model of the carotid artery bifurcation. , 1990, Journal of biomechanics.

[40]  D. D. Syo Radiogrametric Analysis of Carotid Bifurcation: Hemodynamic-Atherogenetic Repercussions on Surgical Patients , 1990 .

[41]  Atushi Nakano,et al.  Three Dimensional Shear Stress Distribution around Small Atherosclerotic Plaques with Steady and Unsteady Flow , 1990 .

[42]  A A Van Steenhoven,et al.  Linear propagation of pulsatile waves in viscoelastic tubes. , 1989, Journal of biomechanics.

[43]  K. Perktold,et al.  Wall shear stress distribution in the human carotid siphon during pulsatile flow. , 1988, Journal of biomechanics.

[44]  K. Perktold,et al.  Analysis of pulsatile blood flow: a carotid siphon model. , 1987, Journal of biomedical engineering.

[45]  R. Nerem Atherogenesis: hemodynamics, vascular geometry, and the endothelium. , 1984, Biorheology.

[46]  L. Talbot,et al.  Flow in Curved Pipes , 1983 .

[47]  Stehbens We,et al.  Hemodynamics and atherosclerosis. , 1982, Biorheology.

[48]  T. Pedley The Fluid Mechanics of Large Blood Vessels: Contents , 1980 .

[49]  G. Thurston,et al.  Rheological parameters for the viscosity viscoelasticity and thixotropy of blood. , 1979, Biorheology.

[50]  J. R. Radbill,et al.  Analysis of oxygen transport from pulsatile viscous blood flow to diseased coronary arteries of man. , 1977, Journal of biomechanics.

[51]  W. T. Koiter,et al.  Foundations of shell theory , 1973 .

[52]  Goldsmith Hl The flow of model particles and blood cells and its relation to thrombogenesis. , 1972 .

[53]  K. Perktold,et al.  Numerical Analysis Of Intramural Stresses AndBlood Flow In Arterial Bifurcation Models , 1970 .