Stability boundaries of two-parameter non-linear elastic structures

Abstract The load-bearing capacity of structures can be influenced by variations in parameters, such as initial geometric defects, multi-parameter loadings, material specifications and temperature. This paper aims to introduce a new formulation to trace the stability boundaries of two-parameter elastic structures. The proposed procedure can find a set of critical points, both limit and bifurcation ones, via a modified Newton’s method. In the authors’ formulation, the residual force is set to zero, and a critically constraint is satisfied simultaneously. Numerical examples presented in this paper demonstrate the efficiency of the suggested method.

[1]  Miran Saje,et al.  A quadratically convergent algorithm for the computation of stability points: The application of the determinant of the tangent stiffness matrix , 1999 .

[2]  K. K. Choong,et al.  A numerical strategy for computing the stability boundaries for multi-loading systems by using generalized inverse and continuation method , 2001 .

[3]  Ginevra Salerno,et al.  Finite element asymptotic analysis of slender elastic structures: A simple approach , 1992 .

[4]  Peter Wriggers,et al.  A general procedure for the direct computation of turning and bifurcation points , 1990 .

[5]  A. Eriksson Derivatives of tangential stiffness matrices for equilibrium path descriptions , 1991 .

[6]  Chahngmin Cho,et al.  Stability analysis using a geometrically nonlinear assumed strain solid shell element model , 1998 .

[7]  M. Tatar,et al.  Some Geometrical Bases for Incremental-Iterative Methods , 2009 .

[8]  Steen Krenk,et al.  Non-linear Modeling and Analysis of Solids and Structures , 2009 .

[9]  Alberto Cardona,et al.  Evaluation of simple bifurcation points and post-critical path in large finite rotation problems , 1999 .

[10]  Adnan Ibrahimbegovic,et al.  Quadratically convergent direct calculation of critical points for 3d structures undergoing finite rotations , 2000 .

[11]  Alexis Fedoroff,et al.  Implementation of a direct procedure for critical point computations using preconditioned iterative solvers , 2012 .

[12]  M. Crisfield An arc‐length method including line searches and accelerations , 1983 .

[13]  Walter Wunderlich,et al.  Direct evaluation of the ‘worst’ imperfection shape in shell buckling , 1997 .

[14]  Raymond H. Plaut,et al.  The effects of initial thrust and elastic foundation on the vibration frequencies of a shallow arch , 1981 .

[15]  Jen-San Chen,et al.  Vibration and Stability of a Shallow Arch Under a Moving Mass-Dashpot-Spring System , 2007 .

[16]  Baisheng Wu,et al.  Direct calculation of buckling strength of imperfect structures , 2000 .

[17]  P. G. Bergan,et al.  Solution algorithms for nonlinear structural problems , 1980 .

[18]  Jean-Marc Battini,et al.  Improved minimal augmentation procedure for the direct computation of critical points , 2003 .

[19]  George E. Blandford,et al.  Work-increment-control method for non-linear analysis , 1993 .

[20]  E. Riks An incremental approach to the solution of snapping and buckling problems , 1979 .

[21]  Jen-San Chen,et al.  Experiment and Theory on the Nonlinear Vibration of a Shallow Arch Under Harmonic Excitation at the End , 2007 .

[22]  Anders Eriksson,et al.  Element formulation and numerical techniques for stability problems in shells , 2002 .

[23]  Anders Eriksson,et al.  Numerical analysis of complex instability behaviour using incremental-iterative strategies , 1999 .

[24]  M. Ohsaki,et al.  Imperfection sensitivity of degenerate hilltop branching points , 2009 .

[25]  Steen Krenk,et al.  An orthogonal residual procedure for non‐linear finite element equations , 1995 .

[26]  R. Seydel Numerical computation of branch points in nonlinear equations , 1979 .

[27]  Evandro Parente,et al.  Design sensitivity analysis of nonlinear structures subjected to thermal loads , 2008 .

[28]  Jian-Xue Xu,et al.  Dynamic stability of shallow arch with elastic supports: application in the dynamic stability analysis of inner winding of transformer during short circuit , 2002 .

[29]  Jian-San Lin,et al.  Exact static and dynamic critical loads of a sinusoidal arch under a point force at the midpoint , 2009 .

[30]  Ekkehard Ramm,et al.  Computational bifurcation theory : path-tracing, pinpointing and path-switching , 1997 .

[31]  W. T. Koiter THE STABILITY OF ELASTIC EQUILIBRIUM , 1970 .

[32]  John E. Dennis,et al.  Numerical methods for unconstrained optimization and nonlinear equations , 1983, Prentice Hall series in computational mathematics.

[33]  Ingrid Svensson,et al.  Numerical treatment of complete load–deflection curves , 1998 .

[34]  S. Lopez Post-critical analysis of structures with a nonlinear pre-buckling state in the presence of imperfections , 2002 .

[35]  M. Ohsaki,et al.  Design sensitivity analysis and optimization for nonlinear buckling of finite-dimensional elastic conservative structures , 2005 .

[36]  Giles W Hunt,et al.  A general theory of elastic stability , 1973 .

[37]  Ilinca Stanciulescu,et al.  Direct calculation of critical points in parameter sensitive systems , 2013 .

[38]  Raffaele Casciaro,et al.  Asymptotic post-buckling FEM analysis using corotational formulation , 2009 .

[39]  K. Huseyin,et al.  Nonlinear theory of elastic stability , 1975 .

[40]  Luis A. Godoy,et al.  Singular perturbations for sensitivity analysis in symmetric bifurcation buckling , 2001 .

[41]  Ekkehard Ramm,et al.  Strategies for Tracing the Nonlinear Response Near Limit Points , 1981 .

[42]  Peter Wriggers,et al.  A quadratically convergent procedure for the calculation of stability points in finite element analysis , 1988 .

[43]  Fumio Fujii,et al.  PINPOINTING BIFURCATION POINTS AND BRANCH-SWITCHING , 1997 .

[44]  C. T. Morley,et al.  Arc-Length Method for Passing Limit Points in Structural Calculation , 1992 .

[45]  P. Wriggers Nonlinear Finite Element Methods , 2008 .

[46]  Baisheng Wu,et al.  A perturbation method for the determination of the buckling strength of imperfection-sensitive structures , 1997 .

[47]  J. Reddy An introduction to nonlinear finite element analysis , 2004 .

[48]  G. Moore,et al.  The Calculation of Turning Points of Nonlinear Equations , 1980 .

[49]  Anders Eriksson,et al.  Fold lines for sensitivity analyses in structural instability , 1994 .

[50]  E. A. de Souza Neto,et al.  On the determination of the path direction for arc-length methods in the presence of bifurcations and `snap-backs' , 1999 .

[51]  Raffaele Casciaro,et al.  PERTURBATION APPROACH TO ELASTIC POST-BUCKLING ANALYSIS , 1998 .

[52]  Ginevra Salerno,et al.  Extrapolation locking and its sanitization in Koiter's asymptotic analysis , 1999 .

[53]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[54]  P. Vannucci,et al.  An asymptotic-numerical method to compute bifurcating branches , 1998 .

[55]  M. Crisfield Non-Linear Finite Element Analysis of Solids and Structures, Essentials , 1997 .

[56]  S. Lopez Detection of bifurcation points along a curve traced by a continuation method , 2002 .

[57]  Evandro Parente,et al.  Tracing Nonlinear Equilibrium Paths of Structures Subjected to Thermal Loading , 2006 .

[58]  Makoto Ohsaki,et al.  Generalized sensitivity and probabilistic analysis of buckling loads of structures , 2007 .

[59]  Siegfried F. Stiemer,et al.  Improved arc length orthogonality methods for nonlinear finite element analysis , 1987 .

[60]  P. L. Grognec,et al.  Elastoplastic bifurcation and collapse of axially loaded cylindrical shells , 2008 .

[61]  B. Widjaja,et al.  Path-following technique based on residual energy suppression for nonlinear finite element analysis , 1998 .

[62]  Anders Eriksson,et al.  Equilibrium subsets for multi-parametric structural analysis , 1997 .

[63]  Ilinca Stanciulescu,et al.  Equilibria and stability boundaries of shallow arches under static loading in a thermal environment , 2013 .