DART: Recent Advances in Remote Sensing Data Modeling With Atmosphere, Polarization, and Chlorophyll Fluorescence
暂无分享,去创建一个
Ahmad Al Bitar | Abdelaziz Kallel | Nektarios Chrysoulakis | Zina Mitraka | Lucas Landier | Jean-Philippe Gastellu-Etchegorry | Douglas C. Morton | Nicolas Lauret | Tiangang Yin | Jianbo Qi | Jordan Guilleux | Eric Chavanon | Zbynek Malenovský | Bruce D. Cook | Sahar Ben Hmida | A. Al Bitar | Josselin Aval | Ghania Medjdoub | D. Morton | Z. Malenovský | J. Gastellu-Etchegorry | B. Cook | A. Kallel | N. Lauret | T. Yin | J. Guilleux | N. Chrysoulakis | Z. Mitraka | J. Aval | Jianbo Qi | L. Landier | E. Chavanon | S. Hmida | Ghania Medjdoub | J. Gastellu‐Etchegorry
[1] Mathias Disney,et al. Monte Carlo ray tracing in optical canopy reflectance modelling , 2000 .
[2] Guoqing Sun,et al. Simulation of satellite, airborne and terrestrial LiDAR with DART (I): Waveform simulation with quasi-Monte Carlo ray tracing , 2016 .
[3] Michael E. Schaepman,et al. Influence of woody elements of a Norway spruce canopy on nadir reflectance simulated by the DART model at very high spatial resolution , 2008 .
[4] Jean-Philippe Gastellu-Etchegorry,et al. Radiative transfer modeling in the Earth–Atmosphere system with DART model , 2013 .
[5] Roberta E. Martin,et al. Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion , 2012 .
[6] Jean-Philippe Gastellu-Etchegorry,et al. Modeling BRF and Radiation Regime of Boreal and Tropical Forest: II. PAR Regime , 1999 .
[7] H. Rahman,et al. Coupled surface‐atmosphere reflectance (CSAR) model: 1. Model description and inversion on synthetic data , 1993 .
[8] B. Hapke. Bidirectional reflectance spectroscopy: 1. Theory , 1981 .
[9] F. Baret,et al. PROSPECT: A model of leaf optical properties spectra , 1990 .
[10] Jean Dauzat,et al. Preliminary studies for a vegetation ladar/lidar space mission in france , 2013, 2013 IEEE International Geoscience and Remote Sensing Symposium - IGARSS.
[11] Nadine Gobron,et al. The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: Actual canopy scenarios and conformity testing , 2015 .
[12] W. Verhoef,et al. An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance , 2009 .
[13] C. Proisy,et al. The variation of apparent crown size and canopy heterogeneity across lowland Amazonian forests , 2010 .
[14] L. Guanter,et al. The seasonal cycle of satellite chlorophyll fluorescence observations and its relationship to vegetation phenology and ecosystem atmosphere carbon exchange , 2014 .
[15] C. Proisy,et al. Biomass Prediction in Tropical Forests: The Canopy Grain Approach , 2012 .
[16] José A. Sobrino,et al. Evaluation of the DART 3D model in the thermal domain using satellite/airborne imagery and ground-based measurements , 2011 .
[17] Jean-Philippe Gastellu-Etchegorry,et al. Simulation of satellite, airborne and terrestrial LiDAR with DART (II): ALS and TLS multi-pulse acquisitions, photon counting, and solar noise , 2016 .
[18] Michel M. Verstraete,et al. Raytran: a Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media , 1998, IEEE Trans. Geosci. Remote. Sens..
[19] Jean-Philippe Gastellu-Etchegorry,et al. Modeling BRF and Radiation Regime of Boreal and Tropical Forests: I. BRF , 1999 .
[20] Jean-Philippe Gastellu-Etchegorry,et al. Sensitivity of Texture of High Resolution Images of Forest to Biophysical and Acquisition Parameters , 1998 .
[21] M. S. Moran,et al. Global and time-resolved monitoring of crop photosynthesis with chlorophyll fluorescence , 2014, Proceedings of the National Academy of Sciences.
[22] E. Dufrene,et al. Retrieval of forest biophysical variables by inverting a 3-D radiative transfer model and using high and very high resolution imagery , 2004 .
[23] Richard M. Lucas,et al. Sorted pulse data (SPD) library. Part I: A generic file format for LiDAR data from pulsed laser systems in terrestrial environments , 2013, Comput. Geosci..
[24] M. Schaepman,et al. Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer , 2013 .
[25] Jean-Philippe Gastellu-Etchegorry,et al. Simulating images of passive sensors with finite field of view by coupling 3-D radiative transfer model and sensor perspective projection , 2015 .
[26] Jean-Philippe Gastellu-Etchegorry,et al. Thermal infrared radiative transfer within three-dimensional vegetation covers , 2003 .
[27] Gérard Dedieu,et al. Discrete Anisotropic Radiative Transfer (DART 5) for Modeling Airborne and Satellite Spectroradiometer and LIDAR Acquisitions of Natural and Urban Landscapes , 2015, Remote. Sens..
[28] A. Rosema,et al. The Relation between Laser-Induced Chlorophyll Fluorescence and Photosynthesis , 1998 .
[29] Glynn C. Hulley,et al. Directional Viewing Effects on Satellite Land Surface Temperature Products Over Sparse Vegetation Canopies—A Multisensor Analysis , 2013, IEEE Geoscience and Remote Sensing Letters.
[30] Nicolas Barbier,et al. Linking canopy images to forest structural parameters: potential of a modeling framework , 2012, Annals of Forest Science.
[31] A. Kuusk,et al. A reflectance model for the homogeneous plant canopy and its inversion , 1989 .
[32] Jean-Philippe Gastellu-Etchegorry,et al. Investigating the Utility of Wavelet Transforms for Inverting a 3-D Radiative Transfer Model Using Hyperspectral Data to Retrieve Forest LAI , 2013, Remote. Sens..
[33] A. Kuusk,et al. A dataset for the validation of reflectance models , 2009 .
[34] V. Vanderbilt,et al. Plant Canopy Specular Reflectance Model , 1985, IEEE Transactions on Geoscience and Remote Sensing.
[35] L. Gómez-Chova,et al. Estimation of solar‐induced vegetation fluorescence from space measurements , 2007 .
[36] Peter R. J. North,et al. Three-dimensional forest light interaction model using a Monte Carlo method , 1996, IEEE Trans. Geosci. Remote. Sens..