Algorithm 941

The hierarchical Tucker format is a storage-efficient scheme to approximate and represent tensors of possibly high order. This article presents a Matlab toolbox, along with the underlying methodology and algorithms, which provides a convenient way to work with this format. The toolbox not only allows for the efficient storage and manipulation of tensors in hierarchical Tucker format but also offers a set of tools for the development of higher-level algorithms. Several examples for the use of the toolbox are given.

[1]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[2]  R. Schneider,et al.  The Alternating Linear Scheme for Tensor Optimisation in the TT Format , 2022 .

[3]  T. Schulte-Herbrüggen,et al.  Computations in quantum tensor networks , 2012, 1212.5005.

[4]  Lars Grasedyck,et al.  Existence and Computation of Low Kronecker-Rank Approximations for Large Linear Systems of Tensor Product Structure , 2004, Computing.

[5]  Daniel Kressner,et al.  Low-Rank Tensor Krylov Subspace Methods for Parametrized Linear Systems , 2011, SIAM J. Matrix Anal. Appl..

[6]  Tobias Jahnke,et al.  On the approximation of high-dimensional differential equations in the hierarchical Tucker format , 2013, BIT Numerical Mathematics.

[7]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[8]  Boris N. Khoromskij,et al.  Quantics-TT Collocation Approximation of Parameter-Dependent and Stochastic Elliptic PDEs , 2010, Comput. Methods Appl. Math..

[9]  Ivan Oseledets,et al.  QTT approximation of elliptic solution operators in higher dimensions , 2011 .

[10]  Tamara G. Kolda,et al.  Categories and Subject Descriptors: G.4 [Mathematics of Computing]: Mathematical Software— , 2022 .

[11]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[12]  Tamara G. Kolda,et al.  Efficient MATLAB Computations with Sparse and Factored Tensors , 2007, SIAM J. Sci. Comput..

[13]  Wolfgang Hackbusch,et al.  A regularized Newton method for the efficient approximation of tensors represented in the canonical tensor format , 2012, Numerische Mathematik.

[14]  Gene H. Golub,et al.  Matrix computations , 1983 .

[15]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[16]  Christine Tobler,et al.  Low-rank tensor methods for linear systems and eigenvalue problems , 2012 .

[17]  Tamara G. Kolda,et al.  MATLAB Tensor Toolbox , 2006 .

[18]  Reinhold Schneider,et al.  Variational calculus with sums of elementary tensors of fixed rank , 2012, Numerische Mathematik.

[19]  Daniel M. Dunlavy,et al.  A scalable optimization approach for fitting canonical tensor decompositions , 2011 .

[20]  Boris N. Khoromskij,et al.  Use of tensor formats in elliptic eigenvalue problems , 2012, Numer. Linear Algebra Appl..

[21]  Dietrich Braess,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig Approximation of 1/x by Exponential Sums in [1, ∞) , 2022 .

[22]  Vladimir A. Kazeev,et al.  On explicit QTT representation of Laplace operator and its inverse , 2010 .

[23]  Daniel Kressner,et al.  Krylov Subspace Methods for Linear Systems with Tensor Product Structure , 2010, SIAM J. Matrix Anal. Appl..

[24]  Lars Grasedyck,et al.  Hierarchical Singular Value Decomposition of Tensors , 2010, SIAM J. Matrix Anal. Appl..

[25]  Jonas Ballani,et al.  Fast Evaluation of Near-Field Boundary Integralsusing Tensor Approximations , 2012 .

[26]  Richard A. Harshman,et al.  Foundations of the PARAFAC procedure: Models and conditions for an "explanatory" multi-model factor analysis , 1970 .

[27]  Reinhold Schneider,et al.  Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors , 2013, SIAM J. Matrix Anal. Appl..

[28]  Boris N. Khoromskij,et al.  Tensor-Structured Galerkin Approximation of Parametric and Stochastic Elliptic PDEs , 2011, SIAM J. Sci. Comput..

[29]  Ivan Oseledets,et al.  Quantics-TT Approximation of Elliptic Solution Operators in Higher Dimensions , 2009 .

[30]  Othmar Koch,et al.  Dynamical Tensor Approximation , 2010, SIAM J. Matrix Anal. Appl..

[31]  Lars Grasedyck,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig a Projection Method to Solve Linear Systems in Tensor Format a Projection Method to Solve Linear Systems in Tensor Format , 2022 .

[32]  J. Ballani,et al.  Black box approximation of tensors in hierarchical Tucker format , 2013 .

[33]  S. Todo,et al.  The ALPS project release 2.0: open source software for strongly correlated systems , 2011, 1101.2646.

[34]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[35]  Rasmus Bro,et al.  The N-way Toolbox for MATLAB , 2000 .

[36]  VLADIMIR A. KAZEEV,et al.  Low-Rank Explicit QTT Representation of the Laplace Operator and Its Inverse , 2012, SIAM J. Matrix Anal. Appl..

[37]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[38]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[39]  Reinhold Schneider,et al.  The Alternating Linear Scheme for Tensor Optimization in the Tensor Train Format , 2012, SIAM J. Sci. Comput..

[40]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[41]  Rolf Dach,et al.  Technical Report 2012 , 2013 .

[42]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[43]  Reinhold Schneider,et al.  Optimization problems in contracted tensor networks , 2011, Comput. Vis. Sci..